Synthesis of 2H/fcc‐Heterophase AuCu Nanostructures for Highly Efficient Electrochemical CO2 Reduction at Industrial Current Densities

Structural engineering of nanomaterials offers a promising way for developing high‐performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu n...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 51; pp. e2304414 - n/a
Main Authors Zhou, Xichen, Zhang, An, Chen, Bo, Zhu, Shangqian, Cui, Yu, Bai, Licheng, Yu, Jinli, Ge, Yiyao, Yun, Qinbai, Li, Lujiang, Huang, Biao, Liao, Lingwen, Fu, Jiaju, Wa, Qingbo, Wang, Gang, Huang, Zhiqi, Zheng, Long, Ren, Yi, Li, Siyuan, Liu, Guangyao, Zhai, Li, Li, Zijian, Liu, Jiawei, Chen, Ye, Ma, Lu, Ling, Chongyi, Wang, Jinlan, Fan, Zhanxi, Du, Yonghua, Shao, Minhua, Zhang, Hua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.12.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structural engineering of nanomaterials offers a promising way for developing high‐performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close‐packed (2H‐type)/face‐centered cubic (fcc) heterophase, high‐index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91Cu9 and fcc Au99Cu1. The experimental results, especially those obtained by in‐situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier‐transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99Cu1 arises from the unconventional 2H/fcc heterophase, high‐index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm−2, respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high‐performance electrocatalysts for various catalytic applications. 2H/fcc‐heterophase AuCu hierarchical nanostructures, i.e., Au99Cu1 and Au91Cu9, are synthesized via a facile one‐pot wet‐chemical method. The obtained 2H/fcc Au99Cu1 hierarchical nanosheets show superior performance of electrochemical CO2 reduction toward the CO production at industrial current densities due to the unique structural features, including unconventional 2H/fcc heterophase, high‐index facets, planar defects, and appropriate alloying of Cu.
AbstractList Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99 Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91 Cu9 and fcc Au99 Cu1 . The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99 Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99 Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2 , respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications.
Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, in this study, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close-packed (2H-type)/face-centered cubic (fcc) heterophase, high-index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91Cu9 and fcc Au99Cu1. The experimental results, especially those obtained by in-situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99Cu1 arises from the unconventional 2H/fcc heterophase, high-index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm-2, respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high-performance electrocatalysts for various catalytic applications.
Structural engineering of nanomaterials offers a promising way for developing high‐performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close‐packed (2H‐type)/face‐centered cubic (fcc) heterophase, high‐index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91Cu9 and fcc Au99Cu1. The experimental results, especially those obtained by in‐situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier‐transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99Cu1 arises from the unconventional 2H/fcc heterophase, high‐index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm−2, respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high‐performance electrocatalysts for various catalytic applications.
Structural engineering of nanomaterials offers a promising way for developing high‐performance catalysts toward catalysis. However, the delicate modulation of thermodynamically unfavorable nanostructures with unconventional phases still remains a challenge. Here, the synthesis of hierarchical AuCu nanostructures is reported with hexagonal close‐packed (2H‐type)/face‐centered cubic (fcc) heterophase, high‐index facets, planar defects (e.g., stacking faults, twin boundaries, and grain boundaries), and tunable Cu content. The obtained 2H/fcc Au99Cu1 hierarchical nanosheets exhibit excellent performance for the electrocatalytic CO2 reduction to produce CO, outperforming the 2H/fcc Au91Cu9 and fcc Au99Cu1. The experimental results, especially those obtained by in‐situ differential electrochemical mass spectroscopy and attenuated total reflection Fourier‐transform infrared spectroscopy, suggest that the enhanced catalytic performance of 2H/fcc Au99Cu1 arises from the unconventional 2H/fcc heterophase, high‐index facets, planar defects, and appropriate alloying of Cu. Impressively, the 2H/fcc Au99Cu1 shows CO Faradaic efficiencies of 96.6% and 92.6% at industrial current densities of 300 and 500 mA cm−2, respectively, as well as good durability, placing it among the best CO2 reduction electrocatalysts for CO production. The atomically structural regulation based on phase engineering of nanomaterials (PEN) provides an avenue for the rational design and preparation of high‐performance electrocatalysts for various catalytic applications. 2H/fcc‐heterophase AuCu hierarchical nanostructures, i.e., Au99Cu1 and Au91Cu9, are synthesized via a facile one‐pot wet‐chemical method. The obtained 2H/fcc Au99Cu1 hierarchical nanosheets show superior performance of electrochemical CO2 reduction toward the CO production at industrial current densities due to the unique structural features, including unconventional 2H/fcc heterophase, high‐index facets, planar defects, and appropriate alloying of Cu.
Author Ma, Lu
Cui, Yu
Shao, Minhua
Zhang, Hua
Wang, Gang
Du, Yonghua
Wa, Qingbo
Ling, Chongyi
Zhou, Xichen
Zhu, Shangqian
Ge, Yiyao
Yun, Qinbai
Zhai, Li
Bai, Licheng
Yu, Jinli
Liao, Lingwen
Liu, Guangyao
Ren, Yi
Liu, Jiawei
Fan, Zhanxi
Li, Zijian
Li, Siyuan
Huang, Zhiqi
Li, Lujiang
Zhang, An
Wang, Jinlan
Fu, Jiaju
Zheng, Long
Chen, Ye
Chen, Bo
Huang, Biao
Author_xml – sequence: 1
  givenname: Xichen
  surname: Zhou
  fullname: Zhou, Xichen
  organization: City University of Hong Kong
– sequence: 2
  givenname: An
  surname: Zhang
  fullname: Zhang, An
  organization: City University of Hong Kong
– sequence: 3
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
  organization: City University of Hong Kong
– sequence: 4
  givenname: Shangqian
  surname: Zhu
  fullname: Zhu, Shangqian
  organization: The Hong Kong University of Science and Technology
– sequence: 5
  givenname: Yu
  surname: Cui
  fullname: Cui, Yu
  organization: Southeast University
– sequence: 6
  givenname: Licheng
  surname: Bai
  fullname: Bai, Licheng
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Jinli
  surname: Yu
  fullname: Yu, Jinli
  organization: City University of Hong Kong
– sequence: 8
  givenname: Yiyao
  surname: Ge
  fullname: Ge, Yiyao
  organization: City University of Hong Kong
– sequence: 9
  givenname: Qinbai
  surname: Yun
  fullname: Yun, Qinbai
  organization: City University of Hong Kong
– sequence: 10
  givenname: Lujiang
  surname: Li
  fullname: Li, Lujiang
  organization: City University of Hong Kong
– sequence: 11
  givenname: Biao
  surname: Huang
  fullname: Huang, Biao
  organization: City University of Hong Kong
– sequence: 12
  givenname: Lingwen
  surname: Liao
  fullname: Liao, Lingwen
  organization: Chinese Academy of Sciences
– sequence: 13
  givenname: Jiaju
  surname: Fu
  fullname: Fu, Jiaju
  organization: City University of Hong Kong
– sequence: 14
  givenname: Qingbo
  surname: Wa
  fullname: Wa, Qingbo
  organization: City University of Hong Kong
– sequence: 15
  givenname: Gang
  surname: Wang
  fullname: Wang, Gang
  organization: The Chinese University of Hong Kong
– sequence: 16
  givenname: Zhiqi
  surname: Huang
  fullname: Huang, Zhiqi
  organization: City University of Hong Kong
– sequence: 17
  givenname: Long
  surname: Zheng
  fullname: Zheng, Long
  organization: The Chinese University of Hong Kong
– sequence: 18
  givenname: Yi
  surname: Ren
  fullname: Ren, Yi
  organization: City University of Hong Kong
– sequence: 19
  givenname: Siyuan
  surname: Li
  fullname: Li, Siyuan
  organization: City University of Hong Kong
– sequence: 20
  givenname: Guangyao
  surname: Liu
  fullname: Liu, Guangyao
  organization: City University of Hong Kong
– sequence: 21
  givenname: Li
  surname: Zhai
  fullname: Zhai, Li
  organization: City University of Hong Kong
– sequence: 22
  givenname: Zijian
  surname: Li
  fullname: Li, Zijian
  organization: City University of Hong Kong
– sequence: 23
  givenname: Jiawei
  surname: Liu
  fullname: Liu, Jiawei
  organization: Nanyang Technological University
– sequence: 24
  givenname: Ye
  surname: Chen
  fullname: Chen, Ye
  organization: The Chinese University of Hong Kong
– sequence: 25
  givenname: Lu
  surname: Ma
  fullname: Ma, Lu
  organization: Brookhaven National Laboratory
– sequence: 26
  givenname: Chongyi
  surname: Ling
  fullname: Ling, Chongyi
  organization: Southeast University
– sequence: 27
  givenname: Jinlan
  surname: Wang
  fullname: Wang, Jinlan
  organization: Southeast University
– sequence: 28
  givenname: Zhanxi
  surname: Fan
  fullname: Fan, Zhanxi
  organization: City University of Hong Kong
– sequence: 29
  givenname: Yonghua
  surname: Du
  fullname: Du, Yonghua
  organization: Brookhaven National Laboratory
– sequence: 30
  givenname: Minhua
  surname: Shao
  fullname: Shao, Minhua
  organization: The Hong Kong University of Science and Technology
– sequence: 31
  givenname: Hua
  orcidid: 0000-0001-9518-740X
  surname: Zhang
  fullname: Zhang, Hua
  email: hua.zhang@cityu.edu.hk
  organization: City University of Hong Kong
BackLink https://www.osti.gov/servlets/purl/2432576$$D View this record in Osti.gov
BookMark eNpdkT1v2zAQhokiAeokXTsT7dJFCb8kkaPhuHGAtAH6MRM0dawYyKRLUgi8dcyY35hfUgkuMnQ6HO557-7Fe4ZOQgyA0HtKLikh7Mp0O3PJCONECCreoAWtGa0EUfUJWhDF60o1Qr5FZzk_EEJUQ5oFevp-CKWH7DOODrPNlbP25c_zBgqkuO9NBrwcVyP-akLMJY22jAkydjHhjf_VDwe8ds5bD6Hg9QC2pGh72HlrBry6Z_gbdJPGx4BNwbehG6clfp6NKc2aawjZFw_5Ap06M2R496-eo5-f1z9Wm-ru_uZ2tbyrIudcVIzTttkqYKyTYguS1sY2LUjbqe3WdJxB6xqjBLTSCSp5a61xtLVcCsela_k5-nDcO9nxOltfwPY2hjD9rpngrG6bCfp0hPYp_h4hF73z2cIwmABxzJrJWggueK0m9ON_6EMcU5gsaKaIIFJKNV9VR-rRD3DQ--R3Jh00JXqOTs_R6dfo9PL6y_K1438BbbCTAg
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
CorporateAuthor Brookhaven National Laboratory (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Laboratory (BNL), Upton, NY (United States)
DBID 7SR
8BQ
8FD
JG9
7X8
OIOZB
OTOTI
DOI 10.1002/adma.202304414
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 2432576
ADMA202304414
Genre article
GrantInformation_xml – fundername: Research Grants Council of Hong Kong
  funderid: T23‐713/22‐RTRS‐CarbonNeutrality; AoE/P‐701/20; 16310419; 16308420; 16304821
– fundername: ITC via Hong Kong Branch of National Precious Metals Material Engineering Research Center
– fundername: DOE Office of Science by Brookhaven National Laboratory
  funderid: DE‐SC0012704
– fundername: City University of Hong Kong
  funderid: 9380100; 7020054; 9678272; 1886921
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
JG9
7X8
LH4
OIOZB
OTOTI
ID FETCH-LOGICAL-o3334-23176b9e22d84be815ac67e8cd9bbad32e7f6a94e78f41837ccaf17c384f38f73
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Mon Oct 14 04:24:52 EDT 2024
Sat Aug 17 04:12:13 EDT 2024
Thu Oct 10 19:02:27 EDT 2024
Sat Aug 24 00:43:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-o3334-23176b9e22d84be815ac67e8cd9bbad32e7f6a94e78f41837ccaf17c384f38f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
BNL-225955-2024-JAAM
Hong Kong Research Grants Council (RCG)
SC0012704; 16310419; 16308420; 16304821
ORCID 0000-0001-9518-740X
000000019518740X
OpenAccessLink https://www.osti.gov/servlets/purl/2432576
PQID 2904088897
PQPubID 2045203
PageCount 10
ParticipantIDs osti_scitechconnect_2432576
proquest_miscellaneous_2854434359
proquest_journals_2904088897
wiley_primary_10_1002_adma_202304414_ADMA202304414
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2021; 9
2021; 7
2018; 122
2015; 6
2021; 21
2021; 4
2011; 2
2020; 120
2020; 142
2019; 12
2019; 58
2020; 59
1972
2020; 11
2021; 121
2020; 32
2019; 141
2019; 364
2019; 365
2017; 358
2022; 144
2021; 14
2018; 6
2021; 16
2016; 6
2020; 5
2014; 5
2020; 4
2018; 3
2020; 3
2021; 12
2021; 11
2015; 137
2018; 1
2022; 61
2021; 598
2018; 118
2022; 7
2020; 26
2018; 30
2016; 116
2017; 18
2021; 374
2022; 603
2021; 60
2018; 10
2019; 574
2022; 18
References_xml – volume: 364
  start-page: 279
  year: 2019
  publication-title: Science
– volume: 598
  start-page: 76
  year: 2021
  publication-title: Nature
– volume: 9
  start-page: 99
  year: 2021
  publication-title: Mater. Res. Lett.
– volume: 12
  start-page: 2455
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 603
  start-page: 631
  year: 2022
  publication-title: Nature
– volume: 18
  year: 2022
  publication-title: Small
– volume: 26
  start-page: 4143
  year: 2020
  publication-title: Chem. ‐ Eur. J.
– volume: 14
  start-page: 4929
  year: 2021
  publication-title: ChemSusChem
– volume: 365
  start-page: 1159
  year: 2019
  publication-title: Science
– volume: 12
  start-page: 3387
  year: 2021
  publication-title: Nat. Commun.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– start-page: 140
  year: 1972
– volume: 11
  start-page: 1088
  year: 2020
  publication-title: Nat. Commun.
– volume: 374
  start-page: 459
  year: 2021
  publication-title: Science
– volume: 59
  start-page: 5350
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 456
  year: 2018
  publication-title: Nat. Chem.
– volume: 12
  start-page: 5745
  year: 2021
  publication-title: Nat. Commun.
– volume: 144
  start-page: 547
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 4443
  year: 2016
  publication-title: ACS Catal.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 871
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 141
  start-page: 4791
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 9293
  year: 2021
  publication-title: Nano Lett.
– volume: 18
  start-page: 3274
  year: 2017
  publication-title: ChemPhysChem
– volume: 3
  start-page: 804
  year: 2020
  publication-title: Nat. Catal.
– volume: 2
  start-page: 292
  year: 2011
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3293
  year: 2020
  publication-title: Nat. Commun.
– volume: 118
  start-page: 6409
  year: 2018
  publication-title: Chem. Rev.
– volume: 574
  start-page: 81
  year: 2019
  publication-title: Nature
– volume: 4
  start-page: 243
  year: 2020
  publication-title: Nat. Rev. Chem.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 144
  start-page: 8106
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 7504
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 7684
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  start-page: 193
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 460
  year: 2018
  publication-title: Nat. Catal.
– volume: 120
  start-page: 1184
  year: 2020
  publication-title: Chem. Rev.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 137
  start-page: 4606
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  start-page: 440
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 58
  start-page: 3774
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 358
  start-page: 1187
  year: 2017
  publication-title: Science
– volume: 121
  start-page: 649
  year: 2021
  publication-title: Chem. Rev.
– volume: 16
  start-page: 1386
  year: 2021
  publication-title: Nat. Nanotech.
– volume: 12
  start-page: 4943
  year: 2021
  publication-title: Nat. Commun.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4948
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  start-page: 98
  year: 2020
  publication-title: Nat. Catal.
SSID ssj0009606
Score 2.5328565
Snippet Structural engineering of nanomaterials offers a promising way for developing high‐performance catalysts toward catalysis. However, the delicate modulation of...
Structural engineering of nanomaterials offers a promising way for developing high-performance catalysts toward catalysis. However, the delicate modulation of...
SourceID osti
proquest
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage e2304414
SubjectTerms bimetallic nanostructures
Carbon dioxide
Carbon monoxide
Catalysis
Chemical reduction
CO2 reduction reaction
Crystal defects
Current density
Electrocatalysts
Fourier transforms
Grain boundaries
heterophase
Infrared reflection
Infrared spectroscopy
Intermetallic compounds
in‐situ FTIR
MATERIALS SCIENCE
Nanomaterials
Nanostructure
phase engineering of nanomaterials
Spectrum analysis
Stacking faults
Structural engineering
Synthesis
Twin boundaries
Title Synthesis of 2H/fcc‐Heterophase AuCu Nanostructures for Highly Efficient Electrochemical CO2 Reduction at Industrial Current Densities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202304414
https://www.proquest.com/docview/2904088897
https://search.proquest.com/docview/2854434359
https://www.osti.gov/servlets/purl/2432576
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMctxKkcKKWturxkpF7DsrYT28fV7qIVEiDRInGzbMcWVasEaTcHOHHk2M_YT8JMnH3QI9wSJZYSzcN_x5PfEPJd57lyXOrMRWcziESeaQlxJcuB8mUphG23Cy4ui-mNOL_Nb9f-4k98iOUHN4yMNl9jgFs366-gobZsuUH4UTN1sh5wiTVd4-sVPwrleQvb43mmC6EW1MZT1n89HBJyDSH1Smaui9V2tjn7SOziOVORye-TZu5O_ON_CMf3vMgO2e6kKB0m3_lENkK1S7bWAIWfyfOPhwoU4uzXjNaRsmk_ev_v6e8Ua2jq-zuYAemwGTUUcnSdSLQNLN8pCGGKBSR_HuikRVTAzEYnqeGO7wgFdHTF6DWCY9E1qJ3TVRcR2lGj6BjL6xH5-oXcnE1-jqZZ17shqznnIgPZKAunA2OlEi6oQW59IQPYXztnS86CjIXVIkgVBaQVCZ4UB9JzJSJXUfKvZLOqq_CNUClg0aVdZEgDg3xoObPMeuFPY4y5KHpkH21nQDIg99ZjgZCfGyY4LqZ65GBhUtOF58wwDbkL1v5a9sjx8jIEFu6W2CrUDdyjEA0IalL3CGvtZ-4TAMQk1DMzaDmztJwZji-Gy7O9twzaJx_wOJXLHJBNMFw4BNEzd0etY78AwIL7dQ
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMctNA7AYfwW3cYwEtesq-3E9rFqO2WwDmlsEjfLdmwNgZJJbQ7jxHHH_Y38JbznpO3GEY75pSR6P_y18_J5hHzQea4clzpz0dkMIpFnWkJcyWqkfFUJYdPngvlpUV6Ij1_zVTUh_gvT8SHWC24YGSlfY4DjgvRwQw21VQIH4apmamX9EO-E3RumZxuCFAr0hNvjeaYLoVbcxkM2vH89pOQGguqe0LwrV9N4c_SUuNWTdmUm3w_apTvwP_-COP7Xqzwj270apePOfZ6TB6F-QZ7cYRS-JDdfrmsQiYtvC9pEysph9P73r9sSy2iaq0sYBOm4nbQU0nTTwWhbmMFT0MIUa0h-XNNZolTA4EZnXc8d30MK6OQzo2fIjkXvoHZJN41EaA-OolOssEfq6ytycTQ7n5RZ374hazjnIgPlKAunA2OVEi6oUW59IQO4gHbOVpwFGQurRZAqCsgsEpwpjqTnSkSuouSvyVbd1OENoVLAvEu7yBAIBinRcmaZ9cIfxhhzUQzILhrPgGpA9K3HGiG_NExwnE8NyN7KpqaP0IVhGtIXTP-1HJD368MQW_jBxNahaeEchXRAEJR6QFgyoLnqGCCmoz0zg5Yza8uZ8XQ-Xm_t_MtF78ij8nx-Yk6OTz_tkse4v6ue2SNbYMTwFjTQ0u0nL_8Da3__jQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMct1EoIDrwRS0sxEtd0u7YT28fVPrQFWlChUm-W7dgqAiUr7eZQThw59jP2k3TGyT7KEY55WEo0D_8dT35DyHud58pxqTMXnc0gEnmmJcSVLAfKl6UQNm0XnJwWs3Px4SK_2PqLv-VDrD-4YWSkfI0BPi9jfwMNtWXiBuFHzdTJelcUIH9RFp1tAFKozxNtj-eZLoRaYRuPWP_ueMjINcTUHZ25rVbTdDN9TOzqQdsqkx-HzdId-l9_MRz_502ekEedFqXD1nmeknuhekYebhEKn5M_X68qkIiL7wtaR8pm_ej9ze_rGRbR1PNLmALpsBk1FJJ03aJoG1i_U1DCFCtIfl7RSWJUwNRGJ23HHd8hCujoM6NnSI5F36B2STdtRGiHjaJjrK9H5usLcj6dfBvNsq55Q1ZzzkUGulEWTgfGSiVcUIPc-kIGcADtnC05CzIWVosgVRSQVyS4UhxIz5WIXEXJX5Kdqq7CK0KlgFWXdpEhDgwSouXMMuuFP4ox5qLokT20nQHNgOBbjxVCfmmY4Lia6pH9lUlNF58LwzQkL1j8a9kj79aXIbJwu8RWoW7gHoVsQJCTukdYsp-ZtwQQ07KemUHLmbXlzHB8Mlwfvf6XQW_J_S_jqfl0fPpxjzzA023pzD7ZARuGNyCAlu4g-fgtbwj-PA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+2H%2Ffcc-Heterophase+AuCu+Nanostructures+for+Highly+Efficient+Electrochemical+CO2+Reduction+at+Industrial+Current+Densities&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhou%2C+Xichen&rft.au=Zhang%2C+An&rft.au=Chen%2C+Bo&rft.au=Zhu%2C+Shangqian&rft.date=2023-12-01&rft.pub=Wiley&rft.issn=0935-9648&rft.volume=35&rft.issue=51&rft_id=info:doi/10.1002%2Fadma.202304414&rft.externalDocID=2432576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon