Bandgap recovery of monolayer MoS2 using defect engineering and chemical doping

Two-dimensional transition metal dichalcogenide materials have created avenues for exciting physics with unique electronic and photonic applications. Among these materials, molybdenum disulfide is the most known due to extensive research in understanding its electronic and optical properties. In thi...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 11; no. 34; pp. 20893 - 20898
Main Authors Aryeetey, Frederick, Pourianejad, Sajedeh, Ayanbajo, Olubukola, Nowlin, Kyle, Ignatova, Tetyana, Aravamudhan, Shyam
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 11.06.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional transition metal dichalcogenide materials have created avenues for exciting physics with unique electronic and photonic applications. Among these materials, molybdenum disulfide is the most known due to extensive research in understanding its electronic and optical properties. In this paper, we report on the successful growth and modification of monolayer MoS2 (1L MoS2) by controlling carrier concentration and manipulating bandgap in order to improve the efficiency of light emission. Atomic size MoS2 vacancies were created using a Helium Ion Microscope, then the defect sites were doped with 2,3,5,6-tetrafluro7,7,8,8-tetracyanoquinodimethane (F4TCNQ). The carrier concentration in intrinsic (as-grown) and engineered 1L MoS2 was calculated using Mass Action model. The results are in a good agreement with Raman and photoluminescence spectroscopy as well as Kelvin probe force microscopy characterizations.
AbstractList Two-dimensional transition metal dichalcogenide materials have created avenues for exciting physics with unique electronic and photonic applications. Among these materials, molybdenum disulfide is the most known due to extensive research in understanding its electronic and optical properties. In this paper, we report on the successful growth and modification of monolayer MoS2 (1L MoS2) by controlling carrier concentration and manipulating bandgap in order to improve the efficiency of light emission. Atomic size MoS2 vacancies were created using a Helium Ion Microscope, then the defect sites were doped with 2,3,5,6-tetrafluro7,7,8,8-tetracyanoquinodimethane (F4TCNQ). The carrier concentration in intrinsic (as-grown) and engineered 1L MoS2 was calculated using Mass Action model. The results are in a good agreement with Raman and photoluminescence spectroscopy as well as Kelvin probe force microscopy characterizations.
Two-dimensional transition metal dichalcogenide materials have created avenues for exciting physics with unique electronic and photonic applications. Among these materials, molybdenum disulfide is the most known due to extensive research in understanding its electronic and optical properties. In this paper, we report on the successful growth and modification of monolayer MoS 2 (1L MoS 2 ) by controlling carrier concentration and manipulating bandgap in order to improve the efficiency of light emission. Atomic size MoS 2 vacancies were created using a Helium Ion Microscope, then the defect sites were doped with 2,3,5,6-tetrafluro7,7,8,8-tetracyanoquinodimethane (F4TCNQ). The carrier concentration in intrinsic (as-grown) and engineered 1L MoS 2 was calculated using Mass Action model. The results are in a good agreement with Raman and photoluminescence spectroscopy as well as Kelvin probe force microscopy characterizations. Two-dimensional transition metal dichalcogenide materials have created avenues for exciting physics with unique electronic and photonic applications.
Author Pourianejad, Sajedeh
Aryeetey, Frederick
Ignatova, Tetyana
Ayanbajo, Olubukola
Aravamudhan, Shyam
Nowlin, Kyle
Author_xml – sequence: 1
  givenname: Frederick
  surname: Aryeetey
  fullname: Aryeetey, Frederick
– sequence: 2
  givenname: Sajedeh
  surname: Pourianejad
  fullname: Pourianejad, Sajedeh
– sequence: 3
  givenname: Olubukola
  surname: Ayanbajo
  fullname: Ayanbajo, Olubukola
– sequence: 4
  givenname: Kyle
  surname: Nowlin
  fullname: Nowlin, Kyle
– sequence: 5
  givenname: Tetyana
  surname: Ignatova
  fullname: Ignatova, Tetyana
– sequence: 6
  givenname: Shyam
  surname: Aravamudhan
  fullname: Aravamudhan, Shyam
BackLink https://www.osti.gov/servlets/purl/1903909$$D View this record in Osti.gov
BookMark eNpdkEtPwzAMxyME4jF24RNEcOEyyLvtBQkmXhJoB-Acpam7ZWqTkbRI-_YEwQGwD7bsv3-WfYR2ffCA0AklF5Tw6rKh0RBWluV6Bx0yItSMEVXt_soP0DSlNcmmJGWK7qMDLkVRcVUeosWN8c3SbHAEGz4gbnFocR986MwWIn4OLwyPyfklbqAFO2DwS-cB4lcpj2K7gt5Z0-EmbHLtGO21pksw_YkT9HZ3-zp_mD0t7h_n10-zwJQYZpxSqmpWSyspKYASaWnF25YJkIVVoNraAqc1bxue3ZSWQi1LEIWRkrTAJ-jqm7sZ6x4aC36IptOb6HoTtzoYp_92vFvpZfjQFeGCMJ4Bp9-AkAank3UD2JUN3ucjNc2qilRZdP6zJYb3EdKge5csdJ3xEMakmZKqEKzIwAk6-yddhzH6_APNpBCkUlQw_gkJI4U1
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
CorporateAuthor North Carolina A & T State University, Greensboro, NC (United States)
University of North Carolina, Greensboro, NC (United States)
CorporateAuthor_xml – name: University of North Carolina, Greensboro, NC (United States)
– name: North Carolina A & T State University, Greensboro, NC (United States)
DBID 7SR
8BQ
8FD
JG9
7X8
OIOZB
OTOTI
5PM
DOI 10.1039/d1ra02888j
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 20898
ExternalDocumentID 1903909
GrantInformation_xml – fundername: ;
  grantid: ECCS-1542174; DMR-1539916
GroupedDBID -JG
0-7
0R~
53G
7SR
8BQ
8FD
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
JG9
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
7X8
AAGNR
OIOZB
OTOTI
5PM
AFPKN
ID FETCH-LOGICAL-o264t-31116b2b5c5107e105c193ff24e57c6e6fbce31b3fd3d3da8c1eb58e47a550fe3
IEDL.DBID RPM
ISSN 2046-2069
IngestDate Tue Sep 17 21:09:32 EDT 2024
Mon May 22 04:07:20 EDT 2023
Fri Oct 25 09:01:43 EDT 2024
Thu Oct 10 18:19:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-o264t-31116b2b5c5107e105c193ff24e57c6e6fbce31b3fd3d3da8c1eb58e47a550fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
National Science Foundation (NSF)
AC05-00OR22725; ECCS-1542174; DMR-1539916
ORCID 0000000256810972
0000000278495715
0000000338596367
0000000199687188
0000000328271761
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034023/
PMID 35479368
PQID 2544096142
PQPubID 2047525
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9034023
osti_scitechconnect_1903909
proquest_miscellaneous_2656742702
proquest_journals_2544096142
PublicationCentury 2000
PublicationDate 20210611
PublicationDateYYYYMMDD 2021-06-11
PublicationDate_xml – month: 6
  year: 2021
  text: 20210611
  day: 11
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United States
PublicationTitle RSC advances
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
SSID ssj0000651261
Score 2.3972335
Snippet Two-dimensional transition metal dichalcogenide materials have created avenues for exciting physics with unique electronic and photonic applications. Among...
SourceID pubmedcentral
osti
proquest
SourceType Open Access Repository
Aggregation Database
StartPage 20893
SubjectTerms Carrier density
Chemistry
Energy gap
Helium ions
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Light emission
Molybdenum disulfide
Monolayers
Optical properties
Photoluminescence
Tetracyanoquinodimethane
Transition metal compounds
Title Bandgap recovery of monolayer MoS2 using defect engineering and chemical doping
URI https://www.proquest.com/docview/2544096142
https://search.proquest.com/docview/2656742702
https://www.osti.gov/servlets/purl/1903909
https://pubmed.ncbi.nlm.nih.gov/PMC9034023
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH4BDsrF-DMiSGridbB23a-jEgkxQU2UhNvSdh1iZCM4Dv73vo5N2dXs2DVZ3l77vm_7-j2AW1uEQoZJbGFpERaXUlpB6DOLKaY9oRDRa3M4efrkTWb8ce7OG-BWZ2EK0b6Sy0H6uRqky_dCW7leqWGlExu-TEeh7XDjz9OEJiboHkXfbb9YwzxaWZE64TCmG4FlNAg-2nDguOZbknFWbWW4iGrAsi6L3Ksz42M4KgEiuds9yAk0dHoKh6OqL9sZPN8j-V-INTFcFhPxm2QJwWRCjorwmUyzV0aMmn1BYm20GkT_WQ4SnEpU6RFA4uKw1DnMxg9vo4lVtkWwMkQvOe6alHqSSVfhevI1AiSFKCxJGNeurzztJVJph0oniR28RKColm6guS-QjiTauYBWmqX6EghlsVKBTIrZ3I6lK3ymOPc9LYWQtANdE6QIq7GxlFVGe6PyCEGEE9phB3pV7KIy878iY3lm2shw1oGb32EMkfkRIVKdbfEeBJFIyX0b7_FrMY_WO4-NyLhe10cwGQr36_LlX_17ZhfazAhTTAMi2oNWvtnqa0QWuewXjLxf5NMPEwnT7A
link.rule.ids 230,315,730,783,787,867,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BkaAXdkRZjcQ1bew42xEqqrIUkFjELbIdp5QlqSA9wNczThNouYFytC0lHo_nTfz8BuDQFqGQYRJbGFqExaWUVhD6zGKKaU8oRPTaXE7uXXrdO3724D7MgFvdhSlI-0oOmunLazMdPBbcyuGralU8sdZ1rx3aDjf6PLMwh_5q84kkfbwBYxTzaCVG6oStmL4JDKRB8FSHecc1f5OMtmotQzeagpbTxMiJSNNZgvvqHccEk-fmKJdN9flLvvHPH7EMiyX2JEfj5hWY0ekqLLSrkm9rcHUs0rgvhsSkybjGP0iWEFynmP4iMie97IYRQ5Tvk1gbGgjRP2qGBIcSVcoPkLi4h7UOd52T23bXKisuWBkCoxw3ZEo9yaSr0FV9jdhLIcBLEsa16ytPe4lU2qHSSWIHHxEoqqUbaO4LzHQS7WxALc1SvQmEslipQCbFaG7H0hU-U5z7npZCSNqAbTP7EQZ6o1arDK1H5RHiEye0wwbsVEaJSqd6j4yamqlQw1kDDr6bcYrMGYdIdTbCPohPMdv3bezjTxkzGo7lOyIjqD3dgiYqhLVLk2z9e-Q-LHRvexfRxenl-TbUmeG_mDpHdAdq-dtI7yKAyeVesVy_AAlF9OI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BkEoulEKrhqSwSL068a7Xr2NJGxVo0kpQKerF2mefsaPgHOivZ9axIeEY-bg7ku3Z2fnG_vYbgGNfpEKmVnuYWoTHpZReksbMY4qZSChE9MYdTh5PovNr_m0aTtdafVWkfSXv-_nTrJ_f31XcyvlMDRqe2OBqPEz9gDt9nrm2g5fwCmPWj9YK9dUmjJksoo0gaZAONF0ITKZJ8tCGnSB0X5ScvmqrwFDagJeb5Mi1bDPahZvmPlckk8f-spR99fyfhONWD_IW3tQYlJyspuzBC5O_g9fDpvXbe7j8InJ9K-bElcu41n-TwhJcr1gGI0In4-IHI44wf0u0cXQQYv6pGhI0JaqWISC6Oo-1D9ejs5_Dc6_uvOAVCJBK3JgpjSSTocKQjQ1iMIVAz1rGTRiryERWKhNQGVgd4CUSRY0ME8NjgRWPNcEBtPIiN4dAKNNKJdJW1tzXMhQxU5zHkZFCSNqBrvNAhgnfqdYqR-9RZYY4JUj9tAO9xjFZHVy_Mqeq5jrVcNaBz3-H8RW5fx0iN8US5yBOxao_9nFOvOHQbL6S8cicsPbmCLqpEtiu3fJha8tPsHN1Osouvk6-d6HNHA3GtTuiPWiVi6U5QhxTyo_Viv0DqAz3Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bandgap+recovery+of+monolayer+MoS2+using+defect+engineering+and+chemical+doping&rft.jtitle=RSC+advances&rft.au=Aryeetey%2C+Frederick&rft.au=Pourianejad%2C+Sajedeh&rft.au=Ayanbajo%2C+Olubukola&rft.au=Nowlin%2C+Kyle&rft.date=2021-06-11&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=11&rft.issue=34&rft.spage=20893&rft.epage=20898&rft_id=info:doi/10.1039%2Fd1ra02888j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon