Flexible Bayesian quantile regression for independent and clustered data

Quantile regression has emerged as a useful supplement to ordinary mean regression. Traditional frequentist quantile regression makes very minimal assumptions on the form of the error distribution and thus is able to accommodate nonnormal errors, which are common in many applications. However, infer...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 11; no. 2; pp. 337 - 352
Main Authors Reich, Brian J., Bondell, Howard D., Wang, Huixia J.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.04.2010
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1465-4644
1468-4357
1468-4357
DOI10.1093/biostatistics/kxp049

Cover

Abstract Quantile regression has emerged as a useful supplement to ordinary mean regression. Traditional frequentist quantile regression makes very minimal assumptions on the form of the error distribution and thus is able to accommodate nonnormal errors, which are common in many applications. However, inference for these models is challenging, particularly for clustered or censored data. A Bayesian approach enables exact inference and is well suited to incorporate clustered, missing, or censored data. In this paper, we propose a flexible Bayesian quantile regression model. We assume that the error distribution is an infinite mixture of Gaussian densities subject to a stochastic constraint that enables inference on the quantile of interest. This method outperforms the traditional frequentist method under a wide array of simulated data models. We extend the proposed approach to analyze clustered data. Here, we differentiate between and develop conditional and marginal models for clustered data. We apply our methods to analyze a multipatient apnea duration data set.
AbstractList Quantile regression has emerged as a useful supplement to ordinary mean regression. Traditional frequentist quantile regression makes very minimal assumptions on the form of the error distribution and thus is able to accommodate nonnormal errors, which are common in many applications. However, inference for these models is challenging, particularly for clustered or censored data. A Bayesian approach enables exact inference and is well suited to incorporate clustered, missing, or censored data. In this paper, we propose a flexible Bayesian quantile regression model. We assume that the error distribution is an infinite mixture of Gaussian densities subject to a stochastic constraint that enables inference on the quantile of interest. This method outperforms the traditional frequentist method under a wide array of simulated data models. We extend the proposed approach to analyze clustered data. Here, we differentiate between and develop conditional and marginal models for clustered data. We apply our methods to analyze a multipatient apnea duration data set.Quantile regression has emerged as a useful supplement to ordinary mean regression. Traditional frequentist quantile regression makes very minimal assumptions on the form of the error distribution and thus is able to accommodate nonnormal errors, which are common in many applications. However, inference for these models is challenging, particularly for clustered or censored data. A Bayesian approach enables exact inference and is well suited to incorporate clustered, missing, or censored data. In this paper, we propose a flexible Bayesian quantile regression model. We assume that the error distribution is an infinite mixture of Gaussian densities subject to a stochastic constraint that enables inference on the quantile of interest. This method outperforms the traditional frequentist method under a wide array of simulated data models. We extend the proposed approach to analyze clustered data. Here, we differentiate between and develop conditional and marginal models for clustered data. We apply our methods to analyze a multipatient apnea duration data set.
Quantile regression has emerged as a useful supplement to ordinary mean regression. Traditional frequentist quantile regression makes very minimal assumptions on the form of the error distribution and thus is able to accommodate nonnormal errors, which are common in many applications. However, inference for these models is challenging, particularly for clustered or censored data. A Bayesian approach enables exact inference and is well suited to incorporate clustered, missing, or censored data. In this paper, we propose a flexible Bayesian quantile regression model. We assume that the error distribution is an infinite mixture of Gaussian densities subject to a stochastic constraint that enables inference on the quantile of interest. This method outperforms the traditional frequentist method under a wide array of simulated data models. We extend the proposed approach to analyze clustered data. Here, we differentiate between and develop conditional and marginal models for clustered data. We apply our methods to analyze a multipatient apnea duration data set.
Quantile regression has emerged as a useful supplement to ordinary mean regression. Traditional frequentist quantile regression makes very minimal assumptions on the form of the error distribution and thus is able to accommodate nonnormal errors, which are common in many applications. However, inference for these models is challenging, particularly for clustered or censored data. A Bayesian approach enables exact inference and is well suited to incorporate clustered, missing, or censored data. In this paper, we propose a flexible Bayesian quantile regression model. We assume that the error distribution is an infinite mixture of Gaussian densities subject to a stochastic constraint that enables inference on the quantile of interest. This method outperforms the traditional frequentist method under a wide array of simulated data models. We extend the proposed approach to analyze clustered data. Here, we differentiate between and develop conditional and marginal models for clustered data. We apply our methods to analyze a multipatient apnea duration data set. [PUBLICATION ABSTRACT]
Author Reich, Brian J.
Wang, Huixia J.
Bondell, Howard D.
Author_xml – sequence: 1
  givenname: Brian J.
  surname: Reich
  fullname: Reich, Brian J.
  email: reich@stat.ncsu.edu
– sequence: 2
  givenname: Howard D.
  surname: Bondell
  fullname: Bondell, Howard D.
  email: reich@stat.ncsu.edu
– sequence: 3
  givenname: Huixia J.
  surname: Wang
  fullname: Wang, Huixia J.
  email: reich@stat.ncsu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19948746$$D View this record in MEDLINE/PubMed
BookMark eNpdkd9LwzAQx4NM3A_9D0SKLz7Vpb00bR51OCcMfNHnkK5XyeySLklh--_t3ESUg7vj7sOX475jMjDWICHXCb1PqIBpqa0PKmgf9MpPP3ctZeKMjBLGi5hBlg---yxmnLEhGXu_pjRNgcMFGSZCsCJnfEQW8wZ3umwwelR79FqZaNspE3Q_cfjh0HttTVRbF2lTYYt9MiFSpopWTecDOqyiSgV1Sc5r1Xi8OtUJeZ8_vc0W8fL1-WX2sIxtSvMQI9aClorTrKA50EykaYaAkBaiD5orCkmZs3oFouCccSxE3cMpR1ZWNaUwIXdH3dbZbYc-yI32K2waZdB2XuYAUIhMHMjbf-Tads70x8mUMgYCeNJDNyeoKzdYydbpjXJ7-fOhHpgeAdu1v1sqDx7IPx7IowfwBXGQfUA
ContentType Journal Article
Copyright The Author 2009. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. 2010
Copyright Oxford Publishing Limited(England) Apr 2010
Copyright_xml – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org. 2010
– notice: Copyright Oxford Publishing Limited(England) Apr 2010
DBID CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1093/biostatistics/kxp049
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
EndPage 352
ExternalDocumentID 1974952821
19948746
10.1093/biostatistics/kxp049
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWTL
ABDTM
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIPB
ACIWK
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
N9A
NGC
NMDNZ
NOMLY
NTWIH
NU-
O0~
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RHF
RIG
RNI
ROL
ROX
RUSNO
RW1
RXO
RZO
SV3
TEORI
TJP
TN5
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
ABDFA
ABEJV
ABGNP
ABVGC
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
ABPQP
ACUXJ
ADNBA
ADYJX
AGORE
AJBYB
AJNCP
ALXQX
ANAKG
FR3
JXSIZ
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-o207t-eef90ba6058073059225e3e328989807a031b74fc3986646e89f60526e4bdf003
ISSN 1465-4644
1468-4357
IngestDate Fri Jul 11 04:59:32 EDT 2025
Mon Jun 30 10:57:33 EDT 2025
Wed Feb 19 01:48:41 EST 2025
Wed Aug 28 03:24:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Clustered data
Bayesian semiparametric modeling
Quantile regression
Stick-breaking prior
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-o207t-eef90ba6058073059225e3e328989807a031b74fc3986646e89f60526e4bdf003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 19948746
PQID 204439361
PQPubID 26167
PageCount 16
ParticipantIDs proquest_miscellaneous_733389590
proquest_journals_204439361
pubmed_primary_19948746
oup_primary_10_1093_biostatistics_kxp049
PublicationCentury 2000
PublicationDate 20100400
2010-Apr
20100401
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 4
  year: 2010
  text: 20100400
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2010
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
SSID ssj0022363
Score 2.234286
Snippet Quantile regression has emerged as a useful supplement to ordinary mean regression. Traditional frequentist quantile regression makes very minimal assumptions...
SourceID proquest
pubmed
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 337
SubjectTerms Algorithms
Apnea - physiopathology
Bayes Theorem
Bayesian analysis
Biometry - methods
Cluster Analysis
Computer Simulation
Deglutition - physiology
Errors
Humans
Markov Chains
Models, Statistical
Monte Carlo Method
Normal distribution
Regression Analysis
Simulation
Statistical Distributions
Time Factors
Title Flexible Bayesian quantile regression for independent and clustered data
URI https://www.ncbi.nlm.nih.gov/pubmed/19948746
https://www.proquest.com/docview/204439361
https://www.proquest.com/docview/733389590
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxDfdAPmBByQUltquEz8ytKrAGBJqRd-suLmgCNSOrpG6_fWcc85H2SQ-XqLWVer27nw5--73O8ZeDo0z4HKIUqmKSMksj1IDwyhPczC5UwtVY6s-nerJTH2Yj-Zdj80aXbJxbxaX1-JK_kerOIZ69SjZf9Bs-6U4gK9Rv3hFDeP1r3Q89myWHvp0lF1AjYb8WaGkcKG_XsM3qnClQsKy7XZLFeWLH5VnSMBoM4DTusxuufIgo8Df7MlIt039e2j40Ts8-AIltZI6WvvZ2zNn36w4JDSoLrcrLP4aDqgnVbkts3BLOHbwGfO2WoU8pYdsYaxFT0u4Zqxxr8OeGYmer5TE9nLFhxO_lev_W3z_fXsWE7npLmn26Wc7np2c2OnxfHqT3RJJQtn69x_bfbeQdUO99tc1CEojD3dmOaQ5foM6Xtlx1JHH9B67G7YM_C3p_z67AcsH7DY1Eb14yCaNFfDGCnhjBbyzAo5K5D0r4KhI3loB91bwiM3Gx9N3kyj0x4hWIk42EUBhYpf5xLZ31CODvhkkSOFbguJQhg7bJapYSJNqrTSkptCe3weUywt054_Z3nK1hKeMj6AocMVCpiUoMMLFLs4zpz1fosgKMWCvUCb2jBhQLFUuSLsjPkviG7CDRnA2rJVzK2KFka_UwwHj7afoyHx2KlvCqjq3iZQYPI9MPGBPSNzddMbgvlrp_T_ffMDudNb6jO1t1hU8x7Bx417URvELA69yjA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Bayesian+quantile+regression+for+independent+and+clustered+data&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Reich%2C+Brian+J&rft.au=Bondell%2C+Howard+D&rft.au=Wang%2C+Huixia+J&rft.date=2010-04-01&rft.issn=1468-4357&rft.eissn=1468-4357&rft.volume=11&rft.issue=2&rft.spage=337&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxp049&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-4644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-4644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-4644&client=summon