Analyzing Syntactic Complexity in ESL and EFL Learners’ Language Production Using an AI Classification Model

This study aims to (i) identify the key syntactic complexity-related characteristics that distinguish between learners studying English as a second language (ESL) and learners studying English as a foreign language (EFL) across three communication modes, (ii) investigate whether Korean learners are...

Full description

Saved in:
Bibliographic Details
Published in언어학 no. 100; pp. 283 - 306
Main Author Wonbin Kim
Format Journal Article
LanguageEnglish
Published 사단법인 한국언어학회 01.12.2024
Subjects
Online AccessGet full text
ISSN1225-7494
2508-4429
DOI10.17290/jlsk.2024..100.283

Cover

Abstract This study aims to (i) identify the key syntactic complexity-related characteristics that distinguish between learners studying English as a second language (ESL) and learners studying English as a foreign language (EFL) across three communication modes, (ii) investigate whether Korean learners are closer to ESL or EFL in terms of the identified syntactic characteristics in each mode, and (iii) test whether a machine learning-based classification model can effectively perform in addressing these two objectives. For the first objective, this study utilized the feature importance metric within the XGBoost classifier to assess the importance of fourteen syntactic complexity measures in differentiating between ESL and EFL learners in essays, dialogues, and monologues. For the second objective, this study trained the XGBoost classifier to sort new input data into ESL and EFL based on the key measures obtained from the first objective. For the third objective, evaluation metrics to assess the XGBoost classifier’s performance were employed. The results demonstrated that the XGBoost classifier can successfully identify the main syntactic characteristics that differentiate between ESL and EFL learners, Korean learners are closer to EFL learners in every mode, and the XGBoost classifier has the potential to serve as a new approach to reveal these two findings. KCI Citation Count: 0
AbstractList This study aims to (i) identify the key syntactic complexity-related characteristics that distinguish between learners studying English as a second language (ESL) and learners studying English as a foreign language (EFL) across three communication modes, (ii) investigate whether Korean learners are closer to ESL or EFL in terms of the identified syntactic characteristics in each mode, and (iii) test whether a machine learning-based classification model can effectively perform in addressing these two objectives. For the first objective, this study utilized the feature importance metric within the XGBoost classifier to assess the importance of fourteen syntactic complexity measures in differentiating between ESL and EFL learners in essays, dialogues, and monologues. For the second objective, this study trained the XGBoost classifier to sort new input data into ESL and EFL based on the key measures obtained from the first objective. For the third objective, evaluation metrics to assess the XGBoost classifier’s performance were employed. The results demonstrated that the XGBoost classifier can successfully identify the main syntactic characteristics that differentiate between ESL and EFL learners, Korean learners are closer to EFL learners in every mode, and the XGBoost classifier has the potential to serve as a new approach to reveal these two findings. KCI Citation Count: 0
Author Wonbin Kim
Author_xml – sequence: 1
  fullname: Wonbin Kim
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003158044$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotUE9PgzAcbcxMnHOfwEsvXkzAtrQFjgQ3XYLOuHkmP9pC6lhZYEvEk1_Dr-cnEedO7yXvX_Iu0cg1ziB0TYlPQxaTu_e62_iMMO77lBCfRcEZGjNBIo9zFo_QmDImvJDH_AJNu84WhFASxUHAx8glDur-07oKr3q3B7W3CqfNdlebD7vvsXV4tsowOI1n8wxnBlpn2u7n6xtn4KoDVAa_tI0-DMHG4bfurwkcThY4rWEYK62Co_TUaFNfofMS6s5MTzhB6_lsnT562fJhkSaZ56SIPCrKmEY8BBUprmXJtSkiKcKASsWENETHihERB0QYSaAACjwGbUAXpSpCEUzQ7X-ta8t8o2zegD1i1eSbNk9e14ucEilFIOVgvjmZD63dGm0h3w0E2j5_Xt7P6PBsJIdTfwGWd25s
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.17290/jlsk.2024..100.283
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2508-4429
EndPage 306
ExternalDocumentID oai_kci_go_kr_ARTI_10665366
NODE12028628
GroupedDBID DBRKI
M~E
TDB
ACYCR
ID FETCH-LOGICAL-n658-15f91847ac8c4d6f4deb8657316c256e0d9c2059305e60aba1a49adeadbfcb753
ISSN 1225-7494
IngestDate Sat May 17 03:10:47 EDT 2025
Thu Feb 06 13:26:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 100
Keywords Korean learners of English
XGBoost classifier
ESL learners
EFL learners
syntactic complexity
communication modes
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n658-15f91847ac8c4d6f4deb8657316c256e0d9c2059305e60aba1a49adeadbfcb753
OpenAccessLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003158044
PageCount 24
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10665366
nurimedia_primary_NODE12028628
PublicationCentury 2000
PublicationDate 2024-12
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12
PublicationDecade 2020
PublicationTitle 언어학
PublicationYear 2024
Publisher 사단법인 한국언어학회
Publisher_xml – name: 사단법인 한국언어학회
SSID ssib001089334
ssib001149716
ssib001128315
ssib044736041
ssib009283417
ssib021436044
Score 2.2750847
Snippet This study aims to (i) identify the key syntactic complexity-related characteristics that distinguish between learners studying English as a second language...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 283
SubjectTerms 언어학
Title Analyzing Syntactic Complexity in ESL and EFL Learners’ Language Production Using an AI Classification Model
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE12028628
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003158044
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 언어학, 2024, 0(100), , pp.283-306
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKOMAFgQAx_kyWwKcqJU0cxz6mbaYVdeNAkXaLYsdBo1OGSntgB8TX4CPxNfgkvOekabqhaXCJHCexY79f7N9znt8j5I3NOUybWnu5jEuPcx17CniEJ0TMc1HGeRTiRuHjE3H0kb87jU57vV8dq6X1Sg_M5V_3lfyPVCEP5Iq7ZP9Bsm2hkAFpkC8cQcJwvJWMnUeRS-dT-1u1ctud3AeOTi5XbkNf-mHmfg-kh7PalSqGeGjsG1R_1ixW4naBonYj269tCOCrT6Z1xEy0JapRgnHTzrtslqVjpgQbyU2Cs3TCVARlo-h8dAKFUaDbxQaWJmyksHZ8YMQUJEYuR3aXHwJ-xZQDb5cBS8Z4uxyxRLrnAqwLS5rAO_Q3dY9dLRFLJje9HyYSJsedUTnAmLu8joY8sC4PqJsEbDUtaEbfOiZOM5GHzpXB9TkC1Am0qvx8_nUxwBYN0FJk0D7b9ch9Zabc8cm9MGfZp4tsscxA85hmQ_yHFQpxh9wN4thZDBx_TzuaNxDDHU98UGGHiYFais682nMFl_lW8wyA1gp_y8Q4j_HcLSdsOqfxqYXNe3u9ccCdqiVQrnvVGuNGwODT4VHzh-RBowDRpEbzI9Kz1WNStUimLZLpFsn0rKKAZApIpoBkukHy7x8_6QbDdIth6jAMd9NkSncxTB2Gn5D5YTofH3lNJBCvAobsDaNSDYFG5UYaXoiSF1ZLEWHQNQOU3fqFMgHGpvQjK_xc58Ocq7yAQVKXRoNC_pTsVReVfUZoEFqplQxsUBrgzqUqQ98YqYyvrClKvU9eQzc54d4g5H1y0HZj9qV2C5OdvJ-kQ-hzKQL5_FbFvCD33SflVvRekr3Vcm1fAcdd6QOHnj8Bh4mc
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+Syntactic+Complexity+in+ESL+and+EFL+Learners%E2%80%99+Language+Production+Using+an+AI+Classification+Model&rft.jtitle=%EC%96%B8%EC%96%B4%ED%95%99%2C+0%28100%29&rft.au=%EA%B9%80%EC%9B%90%EB%B9%88&rft.date=2024-12-01&rft.pub=%EC%82%AC%EB%8B%A8%EB%B2%95%EC%9D%B8+%ED%95%9C%EA%B5%AD%EC%96%B8%EC%96%B4%ED%95%99%ED%9A%8C&rft.issn=1225-7494&rft.eissn=2508-4429&rft.spage=283&rft.epage=306&rft_id=info:doi/10.17290%2Fjlsk.2024..100.283&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10665366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-7494&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-7494&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-7494&client=summon