지자체 탄소중립계획 지원을 위한 지역 수준 탄소배출모델 개발 및 활용성 평가

Achieving carbon neutrality by 2050 necessitates significant contributions from local governments. To accelerate the creation and execution of local government carbon neutral plans, ongoing research focuses on spatial carbon emission data. However, in the Republic of Korea, policy-related use of spa...

Full description

Saved in:
Bibliographic Details
Published in한국기후변화학회지 Vol. 15; no. 51; pp. 691 - 712
Main Authors 정유정(Jeong, Yujeong), 송철호(Song, Cholho), 조현우(Jo, Hyeon-Woo), 고영진(Ko, YoungJin), 이우균(Lee, Woo-Kyun)
Format Journal Article
LanguageKorean
Published 한국기후변화학회 01.10.2024
Subjects
Online AccessGet full text
ISSN2093-5919
2586-2782
DOI10.15531/KSCCR.2024.15.5.691

Cover

Abstract Achieving carbon neutrality by 2050 necessitates significant contributions from local governments. To accelerate the creation and execution of local government carbon neutral plans, ongoing research focuses on spatial carbon emission data. However, in the Republic of Korea, policy-related use of spatial carbon emission data remains limited. This study aims to develop a spatial regression model for carbon emissions using machine learning-based ridge regression and regional greenhouse gas inventories to aid basic local governments in their decision-making regarding carbon neutrality and regional carbon mitigation. Input data were created by disaggregating subdivision land cover maps and facility-level national statistics to the local government level. Group K-fold cross-validation and area-based scaling were applied to improve generalization of the model. Two local carbon emission prediction models (the ‘LCE model’) were developed based on regional GHG inventory in SiDo-level (the ‘Level-1 model’) and LCE model based on Regional GHG inventory in SiGunGu-level (the ‘Level-2 model’). The Level-2 model exhibited higher accuracy, with R2 values of 0.84 and 0.66 at SiGunGu-level for 2019 and 2020, respectively, and at 0.93 and 0.76 at SiDo-level. The carbon emission maps generated by the Level-2 model exhibited higher accuracy than the Level-1 model. This study highlights the cost effectiveness of machine learning-based spatial regression models for carbon emissions compared to IPCC (Intergovernmental Panel on Climate Change) methods and fuel-based models. The machine learning-based methodology and its detailed emission maps are expected to provide timely scientific evidence for developing and assessing carbon neutrality plans at SiGunGu-level, delivering granular information on carbon emissions down to the DongRi-level KCI Citation Count: 0
AbstractList Achieving carbon neutrality by 2050 necessitates significant contributions from local governments. To accelerate the creation and execution of local government carbon neutral plans, ongoing research focuses on spatial carbon emission data. However, in the Republic of Korea, policy-related use of spatial carbon emission data remains limited. This study aims to develop a spatial regression model for carbon emissions using machine learning-based ridge regression and regional greenhouse gas inventories to aid basic local governments in their decision-making regarding carbon neutrality and regional carbon mitigation. Input data were created by disaggregating subdivision land cover maps and facility-level national statistics to the local government level. Group K-fold cross-validation and area-based scaling were applied to improve generalization of the model. Two local carbon emission prediction models (the ‘LCE model’) were developed based on regional GHG inventory in SiDo-level (the ‘Level-1 model’) and LCE model based on Regional GHG inventory in SiGunGu-level (the ‘Level-2 model’). The Level-2 model exhibited higher accuracy, with R2 values of 0.84 and 0.66 at SiGunGu-level for 2019 and 2020, respectively, and at 0.93 and 0.76 at SiDo-level. The carbon emission maps generated by the Level-2 model exhibited higher accuracy than the Level-1 model. This study highlights the cost effectiveness of machine learning-based spatial regression models for carbon emissions compared to IPCC (Intergovernmental Panel on Climate Change) methods and fuel-based models. The machine learning-based methodology and its detailed emission maps are expected to provide timely scientific evidence for developing and assessing carbon neutrality plans at SiGunGu-level, delivering granular information on carbon emissions down to the DongRi-level KCI Citation Count: 0
Author 조현우(Jo, Hyeon-Woo)
이우균(Lee, Woo-Kyun)
송철호(Song, Cholho)
정유정(Jeong, Yujeong)
고영진(Ko, YoungJin)
Author_xml – sequence: 1
  fullname: 정유정(Jeong, Yujeong)
– sequence: 2
  fullname: 송철호(Song, Cholho)
– sequence: 3
  fullname: 조현우(Jo, Hyeon-Woo)
– sequence: 4
  fullname: 고영진(Ko, YoungJin)
– sequence: 5
  fullname: 이우균(Lee, Woo-Kyun)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003136044$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjLtKw1AAhg9SwVr7Bg5ZXITEc8tJzlhq1WKxULuHXCVWW2lxcCsYRMHSOohao1PxBkK8IC6-UHPyDsba6f_4b_Mg02w1XQAWEVSQqhK0srldLNYUDDFNDUVVGEczIItVnclY03EmZciJrHLE50C-0_EtiAnhhCEtC3bFY1fcD8T7p5QcB-LkXIwu4oef8UeQDHvSX3g7EHeBJMIguQwnxtWrJE6vxag7XcRRJL7C-OUp7n1L4yiMo1CKo76U3IRi-CyCNynpn42j7gKY9cy9jpufag7U10r14oZcqa6Xi4WK3GQqlW1oOyo3KfRMrHnURY6ruZbOEcJEwxqxEaQ21myLQM3CjFMTYeYQSlXmQGZ7JAeW_2-bbc9o2L7RMv2J7rSMRtso1OplA0FGKYEkLS9Ny4dtf991fNM4SMFsHxlb1dUSQpxBXafkF4mqic8
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.15531/KSCCR.2024.15.5.691
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Development and applicability assessment of local-scale carbon emission models to support carbon neutrality plans of local governments
DocumentTitle_FL Development and applicability assessment of local-scale carbon emission models to support carbon neutrality plans of local governments
EISSN 2586-2782
EndPage 712
ExternalDocumentID oai_kci_go_kr_ARTI_10644303
NODE11960884
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
DBRKI
M~E
TDB
ACYCR
ID FETCH-LOGICAL-n654-c0cd59a40fa27f4e1de7eb8911237273c104c27cb307b2694a126d34456d06cf3
ISSN 2093-5919
IngestDate Wed Nov 13 03:28:02 EST 2024
Thu Feb 06 13:27:51 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 51
Keywords Carbon Emission Map
Local Government
Ridge Regression
Carbon Emission Model
Carbon Neutrality
Machine Learning
Carbon Neutrality Plan
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n654-c0cd59a40fa27f4e1de7eb8911237273c104c27cb307b2694a126d34456d06cf3
PageCount 22
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10644303
nurimedia_primary_NODE11960884
PublicationCentury 2000
PublicationDate 2024-10
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10
PublicationDecade 2020
PublicationTitle 한국기후변화학회지
PublicationYear 2024
Publisher 한국기후변화학회
Publisher_xml – name: 한국기후변화학회
SSID ssib023393617
ssib044743749
ssib021824902
Score 1.8836068
Snippet Achieving carbon neutrality by 2050 necessitates significant contributions from local governments. To accelerate the creation and execution of local government...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 691
SubjectTerms 학제간연구
Title 지자체 탄소중립계획 지원을 위한 지역 수준 탄소배출모델 개발 및 활용성 평가
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11960884
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003136044
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국기후변화학회지, 2024, 15(5), , pp.691-712
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1da9RAMNT6oC-iqFg_SkD36ciZj91k9zHJ5agtrWAr1qcjl0vUFu6k9B70QQoeomBpfRC1nj4Vv0A4PxBf_EO93H9wdjdJ72rBD4QjN8zuzM7OJDszy34oyoUkNhoJCS3NCI0QEhRMNMbCUIvqCQQYlBp6wqcGZufsqat4epEsjo1Xh1YttVfr5ejuvvtK_sWqgAO78l2yf2HZgikgAAb7whMsDM8_sjEKfOQ6fLECACxATACeiTxcQkEFUQtRzFHURtQXtTFiBgo85NrIq6DARZ6sU0HMRbRSGmXpZSwZ8MKijPl5dQLwnuoOciUHShGjWXtU31cWD3k6_3GBbc6WC-Uil3KAVpBHS0I8PSsTQCmDaFXwZEwU-lx2lwnmGHmGbK-KKMs4yFuc8hi8kF6UEpBZAFRIU-Gd5oJ6QjN63kzRZ5bryi_6nr-0AqHzWlJRrr6LMel0nK1-vt5ekiAbJgS1uEZmPlc2S7lQJp3P6HxwVDdbe8iAxstrS_0y0WVoT0yCT92BtrRrrVE6YXYpHqcz8q5goJsRdMILTItZo-GJIRMXSwzlp_y_lLnrkEydWRphmYuLJY5QWzMdOupRydDIkZ0nLP2jLa9my0ItR66g_8WLE3AM8O3NzPv-lTLvGqDKpFwQj5yPPne5EhjgR8Bd4gPKQdNxxHKN2XtB7lf4JQWY7R5zZ1oWs4bSeowhjHZEplx0MdtlyyW5uI8cEIk2VyCAPdRs81s4YCgfikoXjipHsnRSdeXYcEwZW24dV5bSt2vp683081d1cL-TPnicbj_pv_mx86Uz2FpXeeHLzfRVR027ncHTrkA8-6imD5-n22sZRb_XS791-x_e9de_qzu9br_XVfu9DXXwoptuvU87n9TBxqOd3toJZaEaLPhTWnanita0CdYiPWoQFmI9CU0nwTBQx05cpxDxmBbPZCJDx5HpRHVw_XW-yT00TLthYUizGrodJdZJZbzZasanFDUxqB02EiOsOxDm6zEkPgklhEU21aMkIhPKeVBRbTm6VeNH2PP_G63a8koNEvVLNQNSIQzh84QyWaiwdlsesFMbNunp31U4oxzeffvPKuOrK-34HCQKq_VJ8Rb8BDtS3ZM
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%A7%80%EC%9E%90%EC%B2%B4+%ED%83%84%EC%86%8C%EC%A4%91%EB%A6%BD%EA%B3%84%ED%9A%8D+%EC%A7%80%EC%9B%90%EC%9D%84+%EC%9C%84%ED%95%9C+%EC%A7%80%EC%97%AD+%EC%88%98%EC%A4%80+%ED%83%84%EC%86%8C%EB%B0%B0%EC%B6%9C%EB%AA%A8%EB%8D%B8+%EA%B0%9C%EB%B0%9C+%EB%B0%8F+%ED%99%9C%EC%9A%A9%EC%84%B1+%ED%8F%89%EA%B0%80&rft.jtitle=%ED%95%9C%EA%B5%AD%EA%B8%B0%ED%9B%84%EB%B3%80%ED%99%94%ED%95%99%ED%9A%8C%EC%A7%80&rft.au=%EC%A0%95%EC%9C%A0%EC%A0%95%28Jeong%2C+Yujeong%29&rft.au=%EC%86%A1%EC%B2%A0%ED%98%B8%28Song%2C+Cholho%29&rft.au=%EC%A1%B0%ED%98%84%EC%9A%B0%28Jo%2C+Hyeon-Woo%29&rft.au=%EA%B3%A0%EC%98%81%EC%A7%84%28Ko%2C+YoungJin%29&rft.date=2024-10-01&rft.pub=%ED%95%9C%EA%B5%AD%EA%B8%B0%ED%9B%84%EB%B3%80%ED%99%94%ED%95%99%ED%9A%8C&rft.issn=2093-5919&rft.eissn=2586-2782&rft.volume=15&rft.issue=51&rft.spage=691&rft.epage=712&rft_id=info:doi/10.15531%2FKSCCR.2024.15.5.691&rft.externalDocID=NODE11960884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-5919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-5919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-5919&client=summon