Enhancing Empathic Reasoning of Large Language Models Based on Psychotherapy Models for AI-assisted Social Support
Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce LLMs to reason about human emotional state...
Saved in:
Published in | 인지과학 Vol. 35; no. 1; pp. 23 - 48 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
한국인지과학회
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1226-4067 |
DOI | 10.19066/cogsci.2024.35.1.002 |
Cover
Abstract | Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce LLMs to reason about human emotional states. This method is inspired by various psychotherapy approaches—Cognitive-Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person-Centered Therapy (PCT), and Reality Therapy (RT)—each leading to different patterns of interpreting clients’ mental states. LLMs without CoE reasoning generated predominantly exploratory responses. However, when LLMs used CoE reasoning, we found a more comprehensive range of empathic responses aligned with each psychotherapy model’s different reasoning patterns. For empathic expression classification, the CBT-based CoE resulted in the most balanced classification of empathic expression labels and the text generation of empathic responses. However, regarding emotion reasoning, other approaches like DBT and PCT showed higher performance in emotion reaction classification. We further conducted qualitative analysis and alignment scoring of each prompt-generated output. The findings underscore the importance of understanding the emotional context and how it affects human-AI communication. Our research contributes to understanding how psychotherapy models can be incorporated into LLMs, facilitating the development of context-aware, safe, and empathically responsive AI. KCI Citation Count: 0 |
---|---|
AbstractList | Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce LLMs to reason about human emotional states. This method is inspired by various psychotherapy approaches—Cognitive-Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person-Centered Therapy (PCT), and Reality Therapy (RT)—each leading to different patterns of interpreting clients’ mental states. LLMs without CoE reasoning generated predominantly exploratory responses. However, when LLMs used CoE reasoning, we found a more comprehensive range of empathic responses aligned with each psychotherapy model’s different reasoning patterns. For empathic expression classification, the CBT-based CoE resulted in the most balanced classification of empathic expression labels and the text generation of empathic responses. However, regarding emotion reasoning, other approaches like DBT and PCT showed higher performance in emotion reaction classification. We further conducted qualitative analysis and alignment scoring of each prompt-generated output. The findings underscore the importance of understanding the emotional context and how it affects human-AI communication. Our research contributes to understanding how psychotherapy models can be incorporated into LLMs, facilitating the development of context-aware, safe, and empathically responsive AI. KCI Citation Count: 0 |
Author | Sowon Hahn(한소원) Inju Lee(이인주) Yoon Kyung Lee(이윤경) Minjung Shin(신민정) Seoyeon Bae(배서연) |
Author_xml | – sequence: 1 fullname: Yoon Kyung Lee(이윤경) – sequence: 2 fullname: Inju Lee(이인주) – sequence: 3 fullname: Minjung Shin(신민정) – sequence: 4 fullname: Seoyeon Bae(배서연) – sequence: 5 fullname: Sowon Hahn(한소원) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003065686$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNo1jc1OwzAQhH0oEgX6CEi-cEFK8F_s9lhKgEqForb3aOM4idXWjuz00LcnQNnDzGj30-wNGjnvDEL3lKR0RqR80r6J2qaMMJHyLKUpIWyExpQxmQgi1TWaxGhLknGuFJ-qMQq5a8Fp6xqcHzvoW6vxxkD07mfla7yC0JhBXXOCIXz4yhwifoZoKuwd_opn3fq-NQG68_-19gHPlwkMv2I_cFuvLRzw9tR1PvR36KqGQzSTi9-i7Wu-W7wnq_XbcjFfJU5mJKFsVhpphDRQm6wus1nJNResJsBnpiRTLYRmwwAvp5ApyYyoKK1pJhUTlN-ix79WF-pir23hwf5644t9KOab3bKgRFBFKBnghwt8CvZoKgtFNwQI5-Jz_ZJTqgSXhPBv3j1tXA |
ContentType | Journal Article |
DBID | DBRKI TDB ACYCR |
DOI | 10.19066/cogsci.2024.35.1.002 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | 인공지능 기반 사회적 지지를 위한 대형언어모형의 공감적 추론 향상: 심리치료 모형을 중심으로 |
EndPage | 48 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10417010 NODE11743600 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB ACYCR |
ID | FETCH-LOGICAL-n650-129be6e46eafe5fb59b3c342f0a39eb08c44c2222a3b8a5762e4d11f15672413 |
ISSN | 1226-4067 |
IngestDate | Sat Aug 16 03:10:46 EDT 2025 Thu Feb 06 13:26:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Keywords | AI-assisted Social Support 자연어처리 인지적 AI Natural Language Processing 인공지능 기반 사회적 지지 Empathy Cognitive AI AI Alignment Large Language Models 대형언어모형 공감 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-n650-129be6e46eafe5fb59b3c342f0a39eb08c44c2222a3b8a5762e4d11f15672413 |
OpenAccessLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003065686 |
PageCount | 26 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10417010 nurimedia_primary_NODE11743600 |
PublicationCentury | 2000 |
PublicationDate | 2024-03 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03 |
PublicationDecade | 2020 |
PublicationTitle | 인지과학 |
PublicationYear | 2024 |
Publisher | 한국인지과학회 |
Publisher_xml | – name: 한국인지과학회 |
SSID | ssib053377387 ssib006781544 ssib001195848 ssib036278808 |
Score | 1.8642296 |
Snippet | Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel... |
SourceID | nrf nurimedia |
SourceType | Open Website Publisher |
StartPage | 23 |
SubjectTerms | 인지과학 |
Title | Enhancing Empathic Reasoning of Large Language Models Based on Psychotherapy Models for AI-assisted Social Support |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11743600 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003065686 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 인지과학, 2024, 35(1), , pp.23-48 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6kIALAgGiPCpL4BPKkrWdh495rVokChJF6i2KE2dBhWy13T3Ar2fG2WRdWKHCxXISx44zX-xvJuMxIa9VE9dxi0pOJAJP6qbyVGA4CCQOlQ4b0XBc4Pz-LDz5LN9dBBd7-3ccr6X1Sk_qnzvXlfyPVOEcyBVXyf6DZMdK4QTkQb6QgoQhvZWMi-4LhssAZb_4brcWtk7x172F1Rr_l3MDaW-StPuefbt-k8LE1eBPgo_OCqwfw1V0O0xOPeDUCIDerRMjhqyvkKm7XJYVGVM5S2PMJBH6TBQJSwVLM1bkTAVMKZSgCDAYlGNyGG6UNgP3SnsjZ2m-u8jYCNbtFolTlkCrkM5sqxke9ttp9kVSrBaLQFmJbWF1EUt919rB5dbdy-JzePzMPlfAkvxWfcVMwuLMGeiBdoLu3G8FMgzewqEBffzPPyYYBRQNYFEv5sBQJviEExFMpmiX286ogxfBbxPtjZDel_XXcr4oL5clKC6nJWjFGBnf3yeHPIrQ4eAwSfN0tqW2GBXIUV2BZGAgpeEYeEgEQ_F4HVh8FAm7P-TY1c0CNuzC210dAHrVLYGV3e3WuLUEjE8O1Tp_QO5vdCSa9IB_SPZM94gsR7DTAex0BDtdtNSCnQ5gpz2cqQU7XXT0BtiHqwB26oCd9mCnG7A_Jp9mxXl24m02DPE6UDQ8oK7ahEaGpmpN0OpAaVELyVu_EspoP66lrIEP80rouAJFmxvZTKftNAgj_L38hBx0i848JTTkGuMwmoaLShqfaxH7dQNUVrVRGOr4iLyCN2Vl-BdZHpHj8U2WV33wmPLsQ15M0QwAmsazW1XznNzbfgkvyMFquTYvgQmv9PEGJL8A7TKTVg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Empathic+Reasoning+of+Large+Language+Models+Based+on+Psychotherapy+Models+for+AI-assisted+Social+Support&rft.jtitle=%EC%9D%B8%EC%A7%80%EA%B3%BC%ED%95%99%2C+35%281%29&rft.au=%EC%9D%B4%EC%9C%A4%EA%B2%BD&rft.au=%EC%9D%B4%EC%9D%B8%EC%A3%BC&rft.au=%EC%8B%A0%EB%AF%BC%EC%A0%95&rft.au=%EB%B2%A0%EC%84%9C%EC%97%B0&rft.date=2024-03-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%9D%B8%EC%A7%80%EA%B3%BC%ED%95%99%ED%9A%8C&rft.issn=1226-4067&rft.spage=23&rft.epage=48&rft_id=info:doi/10.19066%2Fcogsci.2024.35.1.002&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10417010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-4067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-4067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-4067&client=summon |