Enhancing Empathic Reasoning of Large Language Models Based on Psychotherapy Models for AI-assisted Social Support

Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce LLMs to reason about human emotional state...

Full description

Saved in:
Bibliographic Details
Published in인지과학 Vol. 35; no. 1; pp. 23 - 48
Main Authors Yoon Kyung Lee(이윤경), Inju Lee(이인주), Minjung Shin(신민정), Seoyeon Bae(배서연), Sowon Hahn(한소원)
Format Journal Article
LanguageEnglish
Published 한국인지과학회 01.03.2024
Subjects
Online AccessGet full text
ISSN1226-4067
DOI10.19066/cogsci.2024.35.1.002

Cover

Abstract Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce LLMs to reason about human emotional states. This method is inspired by various psychotherapy approaches—Cognitive-Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person-Centered Therapy (PCT), and Reality Therapy (RT)—each leading to different patterns of interpreting clients’ mental states. LLMs without CoE reasoning generated predominantly exploratory responses. However, when LLMs used CoE reasoning, we found a more comprehensive range of empathic responses aligned with each psychotherapy model’s different reasoning patterns. For empathic expression classification, the CBT-based CoE resulted in the most balanced classification of empathic expression labels and the text generation of empathic responses. However, regarding emotion reasoning, other approaches like DBT and PCT showed higher performance in emotion reaction classification. We further conducted qualitative analysis and alignment scoring of each prompt-generated output. The findings underscore the importance of understanding the emotional context and how it affects human-AI communication. Our research contributes to understanding how psychotherapy models can be incorporated into LLMs, facilitating the development of context-aware, safe, and empathically responsive AI. KCI Citation Count: 0
AbstractList Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce LLMs to reason about human emotional states. This method is inspired by various psychotherapy approaches—Cognitive-Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person-Centered Therapy (PCT), and Reality Therapy (RT)—each leading to different patterns of interpreting clients’ mental states. LLMs without CoE reasoning generated predominantly exploratory responses. However, when LLMs used CoE reasoning, we found a more comprehensive range of empathic responses aligned with each psychotherapy model’s different reasoning patterns. For empathic expression classification, the CBT-based CoE resulted in the most balanced classification of empathic expression labels and the text generation of empathic responses. However, regarding emotion reasoning, other approaches like DBT and PCT showed higher performance in emotion reaction classification. We further conducted qualitative analysis and alignment scoring of each prompt-generated output. The findings underscore the importance of understanding the emotional context and how it affects human-AI communication. Our research contributes to understanding how psychotherapy models can be incorporated into LLMs, facilitating the development of context-aware, safe, and empathically responsive AI. KCI Citation Count: 0
Author Sowon Hahn(한소원)
Inju Lee(이인주)
Yoon Kyung Lee(이윤경)
Minjung Shin(신민정)
Seoyeon Bae(배서연)
Author_xml – sequence: 1
  fullname: Yoon Kyung Lee(이윤경)
– sequence: 2
  fullname: Inju Lee(이인주)
– sequence: 3
  fullname: Minjung Shin(신민정)
– sequence: 4
  fullname: Seoyeon Bae(배서연)
– sequence: 5
  fullname: Sowon Hahn(한소원)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003065686$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo1jc1OwzAQhH0oEgX6CEi-cEFK8F_s9lhKgEqForb3aOM4idXWjuz00LcnQNnDzGj30-wNGjnvDEL3lKR0RqR80r6J2qaMMJHyLKUpIWyExpQxmQgi1TWaxGhLknGuFJ-qMQq5a8Fp6xqcHzvoW6vxxkD07mfla7yC0JhBXXOCIXz4yhwifoZoKuwd_opn3fq-NQG68_-19gHPlwkMv2I_cFuvLRzw9tR1PvR36KqGQzSTi9-i7Wu-W7wnq_XbcjFfJU5mJKFsVhpphDRQm6wus1nJNResJsBnpiRTLYRmwwAvp5ApyYyoKK1pJhUTlN-ix79WF-pir23hwf5644t9KOab3bKgRFBFKBnghwt8CvZoKgtFNwQI5-Jz_ZJTqgSXhPBv3j1tXA
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.19066/cogsci.2024.35.1.002
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL 인공지능 기반 사회적 지지를 위한 대형언어모형의 공감적 추론 향상: 심리치료 모형을 중심으로
EndPage 48
ExternalDocumentID oai_kci_go_kr_ARTI_10417010
NODE11743600
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
ACYCR
ID FETCH-LOGICAL-n650-129be6e46eafe5fb59b3c342f0a39eb08c44c2222a3b8a5762e4d11f15672413
ISSN 1226-4067
IngestDate Sat Aug 16 03:10:46 EDT 2025
Thu Feb 06 13:26:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords AI-assisted Social Support
자연어처리
인지적 AI
Natural Language Processing
인공지능 기반 사회적 지지
Empathy
Cognitive AI
AI Alignment
Large Language Models
대형언어모형
공감
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n650-129be6e46eafe5fb59b3c342f0a39eb08c44c2222a3b8a5762e4d11f15672413
OpenAccessLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003065686
PageCount 26
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10417010
nurimedia_primary_NODE11743600
PublicationCentury 2000
PublicationDate 2024-03
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03
PublicationDecade 2020
PublicationTitle 인지과학
PublicationYear 2024
Publisher 한국인지과학회
Publisher_xml – name: 한국인지과학회
SSID ssib053377387
ssib006781544
ssib001195848
ssib036278808
Score 1.8642296
Snippet Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 23
SubjectTerms 인지과학
Title Enhancing Empathic Reasoning of Large Language Models Based on Psychotherapy Models for AI-assisted Social Support
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11743600
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003065686
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 인지과학, 2024, 35(1), , pp.23-48
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6kIALAgGiPCpL4BPKkrWdh495rVokChJF6i2KE2dBhWy13T3Ar2fG2WRdWKHCxXISx44zX-xvJuMxIa9VE9dxi0pOJAJP6qbyVGA4CCQOlQ4b0XBc4Pz-LDz5LN9dBBd7-3ccr6X1Sk_qnzvXlfyPVOEcyBVXyf6DZMdK4QTkQb6QgoQhvZWMi-4LhssAZb_4brcWtk7x172F1Rr_l3MDaW-StPuefbt-k8LE1eBPgo_OCqwfw1V0O0xOPeDUCIDerRMjhqyvkKm7XJYVGVM5S2PMJBH6TBQJSwVLM1bkTAVMKZSgCDAYlGNyGG6UNgP3SnsjZ2m-u8jYCNbtFolTlkCrkM5sqxke9ttp9kVSrBaLQFmJbWF1EUt919rB5dbdy-JzePzMPlfAkvxWfcVMwuLMGeiBdoLu3G8FMgzewqEBffzPPyYYBRQNYFEv5sBQJviEExFMpmiX286ogxfBbxPtjZDel_XXcr4oL5clKC6nJWjFGBnf3yeHPIrQ4eAwSfN0tqW2GBXIUV2BZGAgpeEYeEgEQ_F4HVh8FAm7P-TY1c0CNuzC210dAHrVLYGV3e3WuLUEjE8O1Tp_QO5vdCSa9IB_SPZM94gsR7DTAex0BDtdtNSCnQ5gpz2cqQU7XXT0BtiHqwB26oCd9mCnG7A_Jp9mxXl24m02DPE6UDQ8oK7ahEaGpmpN0OpAaVELyVu_EspoP66lrIEP80rouAJFmxvZTKftNAgj_L38hBx0i848JTTkGuMwmoaLShqfaxH7dQNUVrVRGOr4iLyCN2Vl-BdZHpHj8U2WV33wmPLsQ15M0QwAmsazW1XznNzbfgkvyMFquTYvgQmv9PEGJL8A7TKTVg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Empathic+Reasoning+of+Large+Language+Models+Based+on+Psychotherapy+Models+for+AI-assisted+Social+Support&rft.jtitle=%EC%9D%B8%EC%A7%80%EA%B3%BC%ED%95%99%2C+35%281%29&rft.au=%EC%9D%B4%EC%9C%A4%EA%B2%BD&rft.au=%EC%9D%B4%EC%9D%B8%EC%A3%BC&rft.au=%EC%8B%A0%EB%AF%BC%EC%A0%95&rft.au=%EB%B2%A0%EC%84%9C%EC%97%B0&rft.date=2024-03-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%9D%B8%EC%A7%80%EA%B3%BC%ED%95%99%ED%9A%8C&rft.issn=1226-4067&rft.spage=23&rft.epage=48&rft_id=info:doi/10.19066%2Fcogsci.2024.35.1.002&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10417010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-4067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-4067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-4067&client=summon