전압, 전류데이터를 이용한 선형회귀모델의 태양광발전량 예측

PV systems have the disadvantages of large fluctuations in power and of not being controllable due to external factors. In addition, small-scale PV plants rarely receive maintenance after installation. Managers thus need a monitoring system that predicts the power of the PV plant in order to maintai...

Full description

Saved in:
Bibliographic Details
Published in한국태양에너지학회 논문집 Vol. 41; no. 5; pp. 47 - 58
Main Authors 이용규(Lee Yong Kyu), 신우균(Shin Woo-Gyun), 주영철(Ju Young-Chul), 황혜미(Hwang Hye-Mi), 강기환(Kang Gi-Hwan), 고석환(Ko Suk-Whan), 장효식(Chang Hyo-Sik)
Format Journal Article
LanguageKorean
Published 한국태양에너지학회 01.10.2021
Subjects
Online AccessGet full text
ISSN1598-6411
2508-3562
DOI10.7836/kses.2021.41.5.047

Cover

Abstract PV systems have the disadvantages of large fluctuations in power and of not being controllable due to external factors. In addition, small-scale PV plants rarely receive maintenance after installation. Managers thus need a monitoring system that predicts the power of the PV plant in order to maintain performance and facilitate O&M. Recently, methods using big data to predict PV plant power have been applied. In this paper, power was predicted through learning based on PV plant field data. Furthermore, the error of the estimated power was analyzed through accuracy evaluations, RMSE, and R2 analysis. As the learning method, linear regression analysis was applied among machine learning models. Existing linear regression models can immediately estimate power by learning irradiation data as input variables and power data as output variables. However, if the PV system malfunctions, the accuracy of the estimated power generation decreases. In this paper, in order to address this problem, power was estimated by learning irradiation data as input variables and voltage and current data as output variables rather than directly estimating the power. As a result, the RMSE of the proposed linear regression equation was 15.9235kw, yielding a better power estimate than the existing method (16.4241kw). KCI Citation Count: 1
AbstractList PV systems have the disadvantages of large fluctuations in power and of not being controllable due to external factors. In addition, small-scale PV plants rarely receive maintenance after installation. Managers thus need a monitoring system that predicts the power of the PV plant in order to maintain performance and facilitate O&M. Recently, methods using big data to predict PV plant power have been applied. In this paper, power was predicted through learning based on PV plant field data. Furthermore, the error of the estimated power was analyzed through accuracy evaluations, RMSE, and R2 analysis. As the learning method, linear regression analysis was applied among machine learning models. Existing linear regression models can immediately estimate power by learning irradiation data as input variables and power data as output variables. However, if the PV system malfunctions, the accuracy of the estimated power generation decreases. In this paper, in order to address this problem, power was estimated by learning irradiation data as input variables and voltage and current data as output variables rather than directly estimating the power. As a result, the RMSE of the proposed linear regression equation was 15.9235kw, yielding a better power estimate than the existing method (16.4241kw). KCI Citation Count: 1
Author 이용규(Lee Yong Kyu)
주영철(Ju Young-Chul)
신우균(Shin Woo-Gyun)
장효식(Chang Hyo-Sik)
강기환(Kang Gi-Hwan)
황혜미(Hwang Hye-Mi)
고석환(Ko Suk-Whan)
Author_xml – sequence: 1
  fullname: 이용규(Lee Yong Kyu)
– sequence: 2
  fullname: 신우균(Shin Woo-Gyun)
– sequence: 3
  fullname: 주영철(Ju Young-Chul)
– sequence: 4
  fullname: 황혜미(Hwang Hye-Mi)
– sequence: 5
  fullname: 강기환(Kang Gi-Hwan)
– sequence: 6
  fullname: 고석환(Ko Suk-Whan)
– sequence: 7
  fullname: 장효식(Chang Hyo-Sik)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002768717$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjj9Lw0AAxQ9RsNZ-AacsDoKJd5f7kxtLrVooFqR7SC5XCdVWEhzcBDso2KFDpJQW61BQpw4FO_iJmst3MGqn3xve7_F2wGan21EA7CFoccdmR-1YxRaGGFkEWdSChG-AAqbQMW3K8CYoICockxGEtkEpjkMfQoQgxwwXQFNPezpJDo2c6WyY9ud6ssh683T2beRJjz6yZGzo3jQbJtnoefV1n36-p_2lngyN7GGsXwarxSCdj3_11ydDDx_18m0XbLW8q1iV1iyC5km1WTkz643TWqVcNzuMCBNJRltEUM649HAglA-J8G3u-Y6kjCtfBfllImGgMGOIt6TElHOJpONI6Si7CA7-ZztRy23L0O164R8vu247cssXzZorHE5yKe_ur7u3UXitgtBzb_LgRXfueeO4iiBDQhBh_wBOT33G
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.7836/kses.2021.41.5.047
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Estimation of PV Power Generation by Linear Regression Model Using Voltage and Current Data
DocumentTitle_FL Estimation of PV Power Generation by Linear Regression Model Using Voltage and Current Data
EISSN 2508-3562
EndPage 58
ExternalDocumentID oai_kci_go_kr_ARTI_9874577
NODE10619949
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
ACYCR
M~E
ID FETCH-LOGICAL-n649-1c65f495767ca2d9eb049b37ab8c567ebed4114c0de26617fcc2577c1c88cc8e3
ISSN 1598-6411
IngestDate Tue Nov 21 21:43:14 EST 2023
Thu Feb 06 13:23:02 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 5
Keywords 머신 러닝(Machine Learning)
태양광발전 추정(Photovoltaic power Estimation)
전류(Current)
전압(Voltage)
선형회귀분석법(Linear Regression Analysis)
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n649-1c65f495767ca2d9eb049b37ab8c567ebed4114c0de26617fcc2577c1c88cc8e3
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9874577
nurimedia_primary_NODE10619949
PublicationCentury 2000
PublicationDate 2021-10
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10
PublicationDecade 2020
PublicationTitle 한국태양에너지학회 논문집
PublicationYear 2021
Publisher 한국태양에너지학회
Publisher_xml – name: 한국태양에너지학회
SSID ssib001107262
ssib044738290
ssib036279158
ssib053377524
ssib006781331
Score 1.7709523
Snippet PV systems have the disadvantages of large fluctuations in power and of not being controllable due to external factors. In addition, small-scale PV plants...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 47
SubjectTerms 기타공학
Title 전압, 전류데이터를 이용한 선형회귀모델의 태양광발전량 예측
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10619949
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002768717
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국태양에너지학회 논문집, 2021, 41(5), , pp.47-58
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Nb9MwNBrjABcEAsTnVCF8KilN4sT2Mf0YZbBxoIhxqlI3ZVNRi8YqNA4IiR1AYocdiqppE-MwCTjtMIkd-EVr-h94z07TbEziQ0hV8vrs9_zec2I_O_azYdyse_BQuA1qBhJGOjQMPLPOpWMGYZNipEBuS5zQn53zKo_ozLw7PzFJUquWusv1nHx17L6Sf6lVwEG94i7Zv6jZhCkgAIb6hSvUMFz_qI5JuUj8POEUAeHiDyyWwhaID1iOAC-RQl7lAwCSSpgBMSpPQZPFaQD4xBeYCbnqNMgOXBHFEYuAT3iRlH1SYLhgAjkBWVIajzkKnlXFOcBJoTwiLEVGFVBAMXRSIraYJlxokTjhihPw8620L52Ip3i5xC8dVwwAjAglHbDWrHwtryYXiSpZlQmNoXQpxipAbpE8mMdZSRkACrX5_TDMPsHTm-6tdFNzLMp8BWU-RYRmV0SAsfnDhcV29nGnY95Z6baPUPmOkkabQWlTsDXVTDerWmqzuNB9doiqhDrFtceVMaDoaVTG5pWXAUhXWQnN2cURUTznY1vJ6kH9lv53-6Y7QMFNj8YdYKhw4CVz03EP95o6XFncOripLlAHUI2dKR2W_2g3jTuH4N1qvQgxYL5t5aiVc3P5EeWh8OdzD0plnLYQgooTxkmbMbUaY_Z1eez1W3mWjnoJ_pfljD9ug4vGhDX--E8pc3D5wOg_DHgYc_Xx1yPt9fY6lPP2r1KCG9peAu_1VLuLR3BAO55ySatnjTPxWDLj64bhnDHR6pw3qtH2atTr3crAfbDTH6ztRlt7w9Xdwc6PDEDRxtdhbzMTrW4P-73hxoeD728G374M1vajrX5m-HYz-rh-sLc-2N1E8k_vM1H_XbT_-YJRnS5XixUzPjrFbHtUmJb03CYVLvOYDOyGCEFrUXdYAO2w6zFouBugJJX5RogOOmtKCV03k5bkXEoeOheNyXanHV4yMkHeceqMyoBajHqhCJpWvelQCm699MCZvWzcAGPUWnKxhpHq8f60U2st1WA8frcm8DQNxi4bU4mtas91GJ1aumav_C7DVeP0-EW4ZkwuL3XD6zAcWK5PqYfhJ_6x0fQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%A0%84%EC%95%95%2C+%EC%A0%84%EB%A5%98%EB%8D%B0%EC%9D%B4%ED%84%B0%EB%A5%BC+%EC%9D%B4%EC%9A%A9%ED%95%9C+%EC%84%A0%ED%98%95%ED%9A%8C%EA%B7%80%EB%AA%A8%EB%8D%B8%EC%9D%98+%ED%83%9C%EC%96%91%EA%B4%91%EB%B0%9C%EC%A0%84%EB%9F%89+%EC%98%88%EC%B8%A1&rft.jtitle=%ED%95%9C%EA%B5%AD%ED%83%9C%EC%96%91%EC%97%90%EB%84%88%EC%A7%80%ED%95%99%ED%9A%8C+%EB%85%BC%EB%AC%B8%EC%A7%91&rft.au=%EC%9D%B4%EC%9A%A9%EA%B7%9C%28Lee+Yong+Kyu%29&rft.au=%EC%8B%A0%EC%9A%B0%EA%B7%A0%28Shin+Woo-Gyun%29&rft.au=%EC%A3%BC%EC%98%81%EC%B2%A0%28Ju+Young-Chul%29&rft.au=%ED%99%A9%ED%98%9C%EB%AF%B8%28Hwang+Hye-Mi%29&rft.date=2021-10-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%83%9C%EC%96%91%EC%97%90%EB%84%88%EC%A7%80%ED%95%99%ED%9A%8C&rft.issn=1598-6411&rft.eissn=2508-3562&rft.volume=41&rft.issue=5&rft.spage=47&rft.epage=58&rft_id=info:doi/10.7836%2Fkses.2021.41.5.047&rft.externalDocID=NODE10619949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-6411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-6411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-6411&client=summon