머신러닝 학습을 위한 교육용 모션 컨트롤러의 구현

최근 머신러닝의 높은 관심과 더불어 물리적 장치에 연동하기 위한 교육용 컨트롤러의 필요성이 증대되고 있다. 하지만 기존 컨트롤러는 교육용으로서의 고비용과 활용 영역면에서 제한적이다. 본 논문에서는 학생들의 머신 러닝 학습을 목적으로 뇌파를 이용한 동작 제어 컨트롤러를 제안한다. 특정 행위를 상상할 때 발생하는 뇌의 동작 상상 뇌파를 측정하여 표본화 한 후, Tensor Flow를 통하여 표본값을 학습시키고 게임 등의 콘텐츠에서 동작을 인식할 수 있도록 설계하였다. 동작 인식을 위한 움직임 변이는 상하좌우의 방향성과 점프 동작으로 구...

Full description

Saved in:
Bibliographic Details
Published in한국컴퓨터정보학회논문지 Vol. 25; no. 8; pp. 111 - 117
Main Authors 박명철(Myeong-Chul Park), 최덕규(Duk-Kyu Choi), 김태선(Tae-Sun Kim)
Format Journal Article
LanguageKorean
Published 한국컴퓨터정보학회 01.08.2020
Subjects
Online AccessGet full text
ISSN1598-849X
2383-9945
DOI10.9708/jksci.2020.25.08.111

Cover

More Information
Summary:최근 머신러닝의 높은 관심과 더불어 물리적 장치에 연동하기 위한 교육용 컨트롤러의 필요성이 증대되고 있다. 하지만 기존 컨트롤러는 교육용으로서의 고비용과 활용 영역면에서 제한적이다. 본 논문에서는 학생들의 머신 러닝 학습을 목적으로 뇌파를 이용한 동작 제어 컨트롤러를 제안한다. 특정 행위를 상상할 때 발생하는 뇌의 동작 상상 뇌파를 측정하여 표본화 한 후, Tensor Flow를 통하여 표본값을 학습시키고 게임 등의 콘텐츠에서 동작을 인식할 수 있도록 설계하였다. 동작 인식을 위한 움직임 변이는 상하좌우의 방향성과 점프 동작으로 구성된다. 인식 동작의 식별 정보를 언리얼 엔진으로 제작한 게임에 전송하여 게임 속 캐릭터를 동작시키는 절차로 이루어진다. 구현된 컨트롤러는 뇌파 외에도 입력 신호에 따라 다양한 분야에 활용될 수 있으며 머신러닝 학습 등의 교육적 용도로 사용될 수 있을 것이다. Recently, with the high interest of machine learning, the need for educational controllers to interface with physical devices has increased. However, existing controllers are limited in terms of high cost and area of utilization for educational purposes. In this paper, motion control controllers using brain waves are proposed for the purpose of students' machine learning applications. The brain motion that occurs when imagining a specific action is measured and sampled, then the sample values were learned through Tensor Flow and the motion was recognized in contents such as games. Movement variation for motion recognition consists of directionality and jump motion. The identification of the recognition behavior is sent to a game produced by an Unreal Engine to operate the character in the game. In addition to brain waves, the implemented controller can be used in various fields depending on the input signal and can be used for educational purposes such as machine learning applications. KCI Citation Count: 0
ISSN:1598-849X
2383-9945
DOI:10.9708/jksci.2020.25.08.111