인공신경망을 활용한 선형재료절단문제의 휴리스틱 기법 선택

One-dimensional cutting stock problem (1DCSP) is a problem mainly applied in the pipes, cables, and paper rolls industries, and it is a problem of minimizing the trim loss of the stock while satisfying the demand of orders. 1DCSP can be solved by the integer linear programming to get an optimal solu...

Full description

Saved in:
Bibliographic Details
Published in한국CDE학회 논문집 Vol. 25; no. 1; pp. 67 - 76
Main Authors 강민구(Minkoo Kang), 오지웅(Jiwoong Oh), 이유철(Youcheol Lee), 박기진(Kiejin Park), 박상철(Sangchul Park)
Format Journal Article
LanguageKorean
Published (사)한국CDE학회 01.03.2020
한국CDE학회
Subjects
Online AccessGet full text
ISSN2508-4003
2508-402X
DOI10.7315/CDE.2020.067

Cover

Abstract One-dimensional cutting stock problem (1DCSP) is a problem mainly applied in the pipes, cables, and paper rolls industries, and it is a problem of minimizing the trim loss of the stock while satisfying the demand of orders. 1DCSP can be solved by the integer linear programming to get an optimal solution. However, the computation time is exponentially increased depending on the number of types of orders and its quantity demanded. Although many heuristic methods have been proposed to solve the problem, it is difficult to develop a heuristic method that always provides a good solution to various problems due to the performance that is highly dependent on problem domain. In this paper, we propose a method to generate observations by producing various 1DCSPs, and then use the artificial neural network (ANN) algorithm to select the heuristic method that provides a good near-optimal solution for any 1DCSP. ANN models were implemented using the Sequential module of TensorFlow 2.0 Keras. According to the experimental results, the minimum value of root mean square error (RMSE), mean absolute error (MAE), accuracy, precision and recall are found with specific combination of parameters of batch size, epoch number and optimizer. KCI Citation Count: 0
AbstractList One-dimensional cutting stock problem (1DCSP) is a problem mainly applied in the pipes, cables, and paper rolls industries, and it is a problem of minimizing the trim loss of the stock while satisfying the demand of orders. 1DCSP can be solved by the integer linear programming to get an optimal solution. However, the computation time is exponentially increased depending on the number of types of orders and its quantity demanded. Although many heuristic methods have been proposed to solve the problem, it is difficult to develop a heuristic method that always provides a good solution to various problems due to the performance that is highly dependent on problem domain. In this paper, we propose a method to generate observations by producing various 1DCSPs, and then use the artificial neural network (ANN) algorithm to select the heuristic method that provides a good near-optimal solution for any 1DCSP. ANN models were implemented using the Sequential module of TensorFlow 2.0 Keras. According to the experimental results, the minimum value of root mean square error (RMSE), mean absolute error (MAE), accuracy, precision and recall are found with specific combination of parameters of batch size, epoch number and optimizer. KCI Citation Count: 0
Author 박상철(Sangchul Park)
강민구(Minkoo Kang)
이유철(Youcheol Lee)
오지웅(Jiwoong Oh)
박기진(Kiejin Park)
Author_xml – sequence: 1
  fullname: 강민구(Minkoo Kang)
– sequence: 2
  fullname: 오지웅(Jiwoong Oh)
– sequence: 3
  fullname: 이유철(Youcheol Lee)
– sequence: 4
  fullname: 박기진(Kiejin Park)
– sequence: 5
  fullname: 박상철(Sangchul Park)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002562746$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo9jjtLw1AAhS9SwVq7-QOyODik3kfuI2NpqxaKBe3gFm7aREI1lRQHZzuIdS1USSSg-IAOWhW6-Ieam_9gqMXpfMPHOWcd5Pye7wCwiWCJE0R3KtVaCUMMS5DxFZDHFArdgPg498-QrIFiv-_ZkBLCOSJGHhypaDb__FbDeD79SV4iFQ209C5U92_pKNTUIE7HI_UwSR5vVXydDF-TyUzFoYrGWhp-Jc8TdfOUDj-0-ew9mY4W_lW0AVZdedp3isssgNZurVXZ1xvNvXql3NB9ZghdYi6JK23mcmq6BNmCMWijNnexTSB3TGhQQrOXDukgYRAkqDQhxdywGTJ4mxTA9l-tH7hWt-1ZPekt8qRndQOrfNiqW0yY1KQsc7eW7kXgnTkdT1rnGcjg0jpoVmvQJCjbEOQXx_F64g
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.7315/CDE.2020.067
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Selecting Heuristic Method for One-dimensional Cutting Stock Problems Using Artificial Neural Networks
DocumentTitle_FL Selecting Heuristic Method for One-dimensional Cutting Stock Problems Using Artificial Neural Networks
EISSN 2508-402X
EndPage 76
ExternalDocumentID oai_kci_go_kr_ARTI_6895956
NODE09311848
GroupedDBID .UV
DBRKI
TDB
ACYCR
ID FETCH-LOGICAL-n648-a27a3fab6f759f31b8660b1c7f2b307e904535713e3d1843185a905274b6147c3
ISSN 2508-4003
IngestDate Sun Mar 09 07:54:35 EDT 2025
Thu Feb 06 13:24:37 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 1
Keywords Deep learning
One-dimensional cutting stock problem
Classification
Heuristic method
Machine learning
Artificial neural network (ANN)
Combinatorial optimization
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n648-a27a3fab6f759f31b8660b1c7f2b307e904535713e3d1843185a905274b6147c3
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6895956
nurimedia_primary_NODE09311848
PublicationCentury 2000
PublicationDate 2020-03
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03
PublicationDecade 2020
PublicationTitle 한국CDE학회 논문집
PublicationYear 2020
Publisher (사)한국CDE학회
한국CDE학회
Publisher_xml – name: (사)한국CDE학회
– name: 한국CDE학회
SSID ssib053377134
ssib026264091
ssib044738302
ssib029071402
Score 1.7143776
Snippet One-dimensional cutting stock problem (1DCSP) is a problem mainly applied in the pipes, cables, and paper rolls industries, and it is a problem of minimizing...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 67
SubjectTerms 기계공학
Title 인공신경망을 활용한 선형재료절단문제의 휴리스틱 기법 선택
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09311848
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002562746
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국CDE학회 논문집, 2020, 25(1), , pp.67-76
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNA0GrLAS4IBIhnFSH2FLk49q539-hXVVq1PVCk3iw7dSAUxahqhcSBCz0gyrVSQQmKBOIh9QAFpF74CH6jcf6B2XHiOBUShYvjjGdmZ2fs3Rl7dkfTbgmV0W7Zkc6thOq0ppIAmLmmcxFZspbwBsWv54tL9tw9Or_KVicmf5WylrY245n60z-uK_kfqwIM7KpWyf6DZQumAIBzsC8cwcJwPJGNSeAR6RNXkMAhrkVcpiDCJY6BEJO4PgngL1doObKgVRL4REoiPQQ5xJEIYQCpIgOKDAAkFFQhBcTxkJNFBJIBghAKolrDE0BQguClAWvFIW8NrlFEspERtAHNUnUJ6N1aFcUVxDUUEsgt2bgkwgJuZUe6kBgpGXF8zw-GwLw_DohaRREZcb1xEUEhxb2GHAzsKaDMIm7O0wP3exGC9TStLuB7dTmi8ZR2VBeQmzAQgm2ZYr75JFU1nJYfHCfxUQ-ekttBEugrnJgCRl14fNJHVcyMKhG5Q9kKBeUNUiBaaCYPmzCJYb67LL_AgWi9yGDDRw6wUaEm9kqeUH2jaQJ8WKHDSJxPE0kZhoXqi3kuX2A-9jznk1ZeD2Xg_uTVeI5PrNzCPUhAlBnVhRljSDO2VfnSsh8Y0oKYlYpJ7ZTJOWZOLD4LhkO8CfEzNUbbM5lSLaAb7UBHKbfKO9JBMMJ5nhtS9DNfvqIkul2WB5zD1gb4lKdbW6owBoyuJUdx5Zx2dhDhVZz8cT2vTaynF7S7Wefw6NuPbKd7dPCz97GTdbYr_dft7M3n_m67km13-3u72dv93rtXWfdFb-dTb_8w67azzl6l3_7e-7CfvXzf3_laOTr80jvYRfznnYvaymyw4s3pg3omesumQo9MHlmNKLYbnMmGVYuFbRtxrc4bZgwzbSIhurIYV58l1lQVJvCkI2kwk9MYfGhety5pU620lVzWKryhqCiPa2ucJqpiOAytiWBmZBqMJfSKdhN0Ea7Xm6HaPl793k_D9Y0QguQ7oS0kk8y-ok0Xqgof53vbhGUTXv0bwjXtzOiGvq5NbW5sJTfAR9-Mp9HqvwGkkLnG
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%9D%B8%EA%B3%B5%EC%8B%A0%EA%B2%BD%EB%A7%9D%EC%9D%84+%ED%99%9C%EC%9A%A9%ED%95%9C+%EC%84%A0%ED%98%95%EC%9E%AC%EB%A3%8C%EC%A0%88%EB%8B%A8%EB%AC%B8%EC%A0%9C%EC%9D%98+%ED%9C%B4%EB%A6%AC%EC%8A%A4%ED%8B%B1+%EA%B8%B0%EB%B2%95+%EC%84%A0%ED%83%9D&rft.jtitle=%ED%95%9C%EA%B5%ADCDE%ED%95%99%ED%9A%8C+%EB%85%BC%EB%AC%B8%EC%A7%91&rft.au=%EA%B0%95%EB%AF%BC%EA%B5%AC%28Minkoo+Kang%29&rft.au=%EC%98%A4%EC%A7%80%EC%9B%85%28Jiwoong+Oh%29&rft.au=%EC%9D%B4%EC%9C%A0%EC%B2%A0%28Youcheol+Lee%29&rft.au=%EB%B0%95%EA%B8%B0%EC%A7%84%28Kiejin+Park%29&rft.date=2020-03-01&rft.pub=%28%EC%82%AC%29%ED%95%9C%EA%B5%ADCDE%ED%95%99%ED%9A%8C&rft.issn=2508-4003&rft.eissn=2508-402X&rft.volume=25&rft.issue=1&rft.spage=67&rft.epage=76&rft_id=info:doi/10.7315%2FCDE.2020.067&rft.externalDocID=NODE09311848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2508-4003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2508-4003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2508-4003&client=summon