인공신경망을 활용한 선형재료절단문제의 휴리스틱 기법 선택
One-dimensional cutting stock problem (1DCSP) is a problem mainly applied in the pipes, cables, and paper rolls industries, and it is a problem of minimizing the trim loss of the stock while satisfying the demand of orders. 1DCSP can be solved by the integer linear programming to get an optimal solu...
Saved in:
Published in | 한국CDE학회 논문집 Vol. 25; no. 1; pp. 67 - 76 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Korean |
Published |
(사)한국CDE학회
01.03.2020
한국CDE학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2508-4003 2508-402X |
DOI | 10.7315/CDE.2020.067 |
Cover
Abstract | One-dimensional cutting stock problem (1DCSP) is a problem mainly applied in the pipes, cables, and paper rolls industries, and it is a problem of minimizing the trim loss of the stock while satisfying the demand of orders. 1DCSP can be solved by the integer linear programming to get an optimal solution. However, the computation time is exponentially increased depending on the number of types of orders and its quantity demanded. Although many heuristic methods have been proposed to solve the problem, it is difficult to develop a heuristic method that always provides a good solution to various problems due to the performance that is highly dependent on problem domain. In this paper, we propose a method to generate observations by producing various 1DCSPs, and then use the artificial neural network (ANN) algorithm to select the heuristic method that provides a good near-optimal solution for any 1DCSP.
ANN models were implemented using the Sequential module of TensorFlow 2.0 Keras. According to the experimental results, the minimum value of root mean square error (RMSE), mean absolute error (MAE), accuracy, precision and recall are found with specific combination of parameters of batch size, epoch number and optimizer. KCI Citation Count: 0 |
---|---|
AbstractList | One-dimensional cutting stock problem (1DCSP) is a problem mainly applied in the pipes, cables, and paper rolls industries, and it is a problem of minimizing the trim loss of the stock while satisfying the demand of orders. 1DCSP can be solved by the integer linear programming to get an optimal solution. However, the computation time is exponentially increased depending on the number of types of orders and its quantity demanded. Although many heuristic methods have been proposed to solve the problem, it is difficult to develop a heuristic method that always provides a good solution to various problems due to the performance that is highly dependent on problem domain. In this paper, we propose a method to generate observations by producing various 1DCSPs, and then use the artificial neural network (ANN) algorithm to select the heuristic method that provides a good near-optimal solution for any 1DCSP.
ANN models were implemented using the Sequential module of TensorFlow 2.0 Keras. According to the experimental results, the minimum value of root mean square error (RMSE), mean absolute error (MAE), accuracy, precision and recall are found with specific combination of parameters of batch size, epoch number and optimizer. KCI Citation Count: 0 |
Author | 박상철(Sangchul Park) 강민구(Minkoo Kang) 이유철(Youcheol Lee) 오지웅(Jiwoong Oh) 박기진(Kiejin Park) |
Author_xml | – sequence: 1 fullname: 강민구(Minkoo Kang) – sequence: 2 fullname: 오지웅(Jiwoong Oh) – sequence: 3 fullname: 이유철(Youcheol Lee) – sequence: 4 fullname: 박기진(Kiejin Park) – sequence: 5 fullname: 박상철(Sangchul Park) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002562746$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNo9jjtLw1AAhS9SwVq7-QOyODik3kfuI2NpqxaKBe3gFm7aREI1lRQHZzuIdS1USSSg-IAOWhW6-Ieam_9gqMXpfMPHOWcd5Pye7wCwiWCJE0R3KtVaCUMMS5DxFZDHFArdgPg498-QrIFiv-_ZkBLCOSJGHhypaDb__FbDeD79SV4iFQ209C5U92_pKNTUIE7HI_UwSR5vVXydDF-TyUzFoYrGWhp-Jc8TdfOUDj-0-ew9mY4W_lW0AVZdedp3isssgNZurVXZ1xvNvXql3NB9ZghdYi6JK23mcmq6BNmCMWijNnexTSB3TGhQQrOXDukgYRAkqDQhxdywGTJ4mxTA9l-tH7hWt-1ZPekt8qRndQOrfNiqW0yY1KQsc7eW7kXgnTkdT1rnGcjg0jpoVmvQJCjbEOQXx_F64g |
ContentType | Journal Article |
DBID | DBRKI TDB ACYCR |
DOI | 10.7315/CDE.2020.067 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Selecting Heuristic Method for One-dimensional Cutting Stock Problems Using Artificial Neural Networks |
DocumentTitle_FL | Selecting Heuristic Method for One-dimensional Cutting Stock Problems Using Artificial Neural Networks |
EISSN | 2508-402X |
EndPage | 76 |
ExternalDocumentID | oai_kci_go_kr_ARTI_6895956 NODE09311848 |
GroupedDBID | .UV DBRKI TDB ACYCR |
ID | FETCH-LOGICAL-n648-a27a3fab6f759f31b8660b1c7f2b307e904535713e3d1843185a905274b6147c3 |
ISSN | 2508-4003 |
IngestDate | Sun Mar 09 07:54:35 EDT 2025 Thu Feb 06 13:24:37 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Keywords | Deep learning One-dimensional cutting stock problem Classification Heuristic method Machine learning Artificial neural network (ANN) Combinatorial optimization |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-n648-a27a3fab6f759f31b8660b1c7f2b307e904535713e3d1843185a905274b6147c3 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6895956 nurimedia_primary_NODE09311848 |
PublicationCentury | 2000 |
PublicationDate | 2020-03 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03 |
PublicationDecade | 2020 |
PublicationTitle | 한국CDE학회 논문집 |
PublicationYear | 2020 |
Publisher | (사)한국CDE학회 한국CDE학회 |
Publisher_xml | – name: (사)한국CDE학회 – name: 한국CDE학회 |
SSID | ssib053377134 ssib026264091 ssib044738302 ssib029071402 |
Score | 1.7143776 |
Snippet | One-dimensional cutting stock problem (1DCSP) is a problem mainly applied in the pipes, cables, and paper rolls industries, and it is a problem of minimizing... |
SourceID | nrf nurimedia |
SourceType | Open Website Publisher |
StartPage | 67 |
SubjectTerms | 기계공학 |
Title | 인공신경망을 활용한 선형재료절단문제의 휴리스틱 기법 선택 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09311848 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002562746 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 한국CDE학회 논문집, 2020, 25(1), , pp.67-76 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNA0GrLAS4IBIhnFSH2FLk49q539-hXVVq1PVCk3iw7dSAUxahqhcSBCz0gyrVSQQmKBOIh9QAFpF74CH6jcf6B2XHiOBUShYvjjGdmZ2fs3Rl7dkfTbgmV0W7Zkc6thOq0ppIAmLmmcxFZspbwBsWv54tL9tw9Or_KVicmf5WylrY245n60z-uK_kfqwIM7KpWyf6DZQumAIBzsC8cwcJwPJGNSeAR6RNXkMAhrkVcpiDCJY6BEJO4PgngL1doObKgVRL4REoiPQQ5xJEIYQCpIgOKDAAkFFQhBcTxkJNFBJIBghAKolrDE0BQguClAWvFIW8NrlFEspERtAHNUnUJ6N1aFcUVxDUUEsgt2bgkwgJuZUe6kBgpGXF8zw-GwLw_DohaRREZcb1xEUEhxb2GHAzsKaDMIm7O0wP3exGC9TStLuB7dTmi8ZR2VBeQmzAQgm2ZYr75JFU1nJYfHCfxUQ-ekttBEugrnJgCRl14fNJHVcyMKhG5Q9kKBeUNUiBaaCYPmzCJYb67LL_AgWi9yGDDRw6wUaEm9kqeUH2jaQJ8WKHDSJxPE0kZhoXqi3kuX2A-9jznk1ZeD2Xg_uTVeI5PrNzCPUhAlBnVhRljSDO2VfnSsh8Y0oKYlYpJ7ZTJOWZOLD4LhkO8CfEzNUbbM5lSLaAb7UBHKbfKO9JBMMJ5nhtS9DNfvqIkul2WB5zD1gb4lKdbW6owBoyuJUdx5Zx2dhDhVZz8cT2vTaynF7S7Wefw6NuPbKd7dPCz97GTdbYr_dft7M3n_m67km13-3u72dv93rtXWfdFb-dTb_8w67azzl6l3_7e-7CfvXzf3_laOTr80jvYRfznnYvaymyw4s3pg3omesumQo9MHlmNKLYbnMmGVYuFbRtxrc4bZgwzbSIhurIYV58l1lQVJvCkI2kwk9MYfGhety5pU620lVzWKryhqCiPa2ucJqpiOAytiWBmZBqMJfSKdhN0Ea7Xm6HaPl793k_D9Y0QguQ7oS0kk8y-ok0Xqgof53vbhGUTXv0bwjXtzOiGvq5NbW5sJTfAR9-Mp9HqvwGkkLnG |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%9D%B8%EA%B3%B5%EC%8B%A0%EA%B2%BD%EB%A7%9D%EC%9D%84+%ED%99%9C%EC%9A%A9%ED%95%9C+%EC%84%A0%ED%98%95%EC%9E%AC%EB%A3%8C%EC%A0%88%EB%8B%A8%EB%AC%B8%EC%A0%9C%EC%9D%98+%ED%9C%B4%EB%A6%AC%EC%8A%A4%ED%8B%B1+%EA%B8%B0%EB%B2%95+%EC%84%A0%ED%83%9D&rft.jtitle=%ED%95%9C%EA%B5%ADCDE%ED%95%99%ED%9A%8C+%EB%85%BC%EB%AC%B8%EC%A7%91&rft.au=%EA%B0%95%EB%AF%BC%EA%B5%AC%28Minkoo+Kang%29&rft.au=%EC%98%A4%EC%A7%80%EC%9B%85%28Jiwoong+Oh%29&rft.au=%EC%9D%B4%EC%9C%A0%EC%B2%A0%28Youcheol+Lee%29&rft.au=%EB%B0%95%EA%B8%B0%EC%A7%84%28Kiejin+Park%29&rft.date=2020-03-01&rft.pub=%28%EC%82%AC%29%ED%95%9C%EA%B5%ADCDE%ED%95%99%ED%9A%8C&rft.issn=2508-4003&rft.eissn=2508-402X&rft.volume=25&rft.issue=1&rft.spage=67&rft.epage=76&rft_id=info:doi/10.7315%2FCDE.2020.067&rft.externalDocID=NODE09311848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2508-4003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2508-4003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2508-4003&client=summon |