Effect of Ta–TiO2 Nanoparticles in Anion Exchange Membranes: Improved Hydroxide Ion Conductivity and Mechanical Strength for Alkaline Water Electrolysis Cells
To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated. Flexible QPAF‐4/Ta–TiO2 composite membranes are obtained using solution‐casting and die coating methods. Cross‐sectional scanning electron microsco...
Saved in:
Published in | Macromolecular chemistry and physics Vol. 226; no. 4 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated. Flexible QPAF‐4/Ta–TiO2 composite membranes are obtained using solution‐casting and die coating methods. Cross‐sectional scanning electron microscopy reveals that the die coating method produces a more homogenous and uniform distribution of Ta–TiO2 particles in the composite membranes than the solution‐casting method. The Ta‐TiO2 particles promotes the suppression of water absorbability and dimensional swelling of the composite membranes which is more pronounced in the die coated membranes. The Ta–TiO2 increase hydroxide ion conductivity to 116.9 mS cm−1 at 80 °C for the die‐coated membrane, surpassing that of the pristine QPAF‐4 membrane (92 mS cm−1). Ta–TiO2 with the composite membranes survive in 4 m KOH at 80 °C for 1000 h, maintaining 96–112 mS cm−1 (88–99% remaining) of initial conductivity. All composite membranes exhibit higher mechanical robustness (elongation of >200%), with the die‐coated composite membranes. The optimized die coated composite membrane is fabricated in an alkaline water electrolysis cell achieving 1.63 V at 1.0 A cm−2 (75.5% efficiency).
The effect of Ta–TiO2 nanoparticles as metal oxide fillers for anion exchange membranes is investigated. The resulting composite membranes exhibit enhanced hydroxide ion conductivity and mechanical robustness. The optimized composite membrane is applied to an alkaline water electrolysis cell with NiFeO cathode catalyst and 1 m KOH at 80 °C to achieve high performance. |
---|---|
AbstractList | To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated. Flexible QPAF‐4/Ta–TiO2 composite membranes are obtained using solution‐casting and die coating methods. Cross‐sectional scanning electron microscopy reveals that the die coating method produces a more homogenous and uniform distribution of Ta–TiO2 particles in the composite membranes than the solution‐casting method. The Ta‐TiO2 particles promotes the suppression of water absorbability and dimensional swelling of the composite membranes which is more pronounced in the die coated membranes. The Ta–TiO2 increase hydroxide ion conductivity to 116.9 mS cm−1 at 80 °C for the die‐coated membrane, surpassing that of the pristine QPAF‐4 membrane (92 mS cm−1). Ta–TiO2 with the composite membranes survive in 4 m KOH at 80 °C for 1000 h, maintaining 96–112 mS cm−1 (88–99% remaining) of initial conductivity. All composite membranes exhibit higher mechanical robustness (elongation of >200%), with the die‐coated composite membranes. The optimized die coated composite membrane is fabricated in an alkaline water electrolysis cell achieving 1.63 V at 1.0 A cm−2 (75.5% efficiency).
The effect of Ta–TiO2 nanoparticles as metal oxide fillers for anion exchange membranes is investigated. The resulting composite membranes exhibit enhanced hydroxide ion conductivity and mechanical robustness. The optimized composite membrane is applied to an alkaline water electrolysis cell with NiFeO cathode catalyst and 1 m KOH at 80 °C to achieve high performance. To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated. Flexible QPAF‐4/Ta–TiO2 composite membranes are obtained using solution‐casting and die coating methods. Cross‐sectional scanning electron microscopy reveals that the die coating method produces a more homogenous and uniform distribution of Ta–TiO2 particles in the composite membranes than the solution‐casting method. The Ta‐TiO2 particles promotes the suppression of water absorbability and dimensional swelling of the composite membranes which is more pronounced in the die coated membranes. The Ta–TiO2 increase hydroxide ion conductivity to 116.9 mS cm−1 at 80 °C for the die‐coated membrane, surpassing that of the pristine QPAF‐4 membrane (92 mS cm−1). Ta–TiO2 with the composite membranes survive in 4 m KOH at 80 °C for 1000 h, maintaining 96–112 mS cm−1 (88–99% remaining) of initial conductivity. All composite membranes exhibit higher mechanical robustness (elongation of >200%), with the die‐coated composite membranes. The optimized die coated composite membrane is fabricated in an alkaline water electrolysis cell achieving 1.63 V at 1.0 A cm−2 (75.5% efficiency). |
Author | Kakinuma, Katsuyoshi Tsujii, Kaito Yadav, Vikrant Iwataki, Toshio Mahmoud, Ahmed Mohamed Ahmed Liu, Fanghua Miyatake, Kenji Uchida, Makoto Guo, Lin Xian, Fang Wong, Chun Yik |
Author_xml | – sequence: 1 givenname: Ahmed Mohamed Ahmed surname: Mahmoud fullname: Mahmoud, Ahmed Mohamed Ahmed organization: Sohag University – sequence: 2 givenname: Kenji orcidid: 0000-0001-5713-2635 surname: Miyatake fullname: Miyatake, Kenji email: miyatake@yamanashi.ac.jp organization: Waseda University – sequence: 3 givenname: Kaito surname: Tsujii fullname: Tsujii, Kaito organization: University of Yamanashi – sequence: 4 givenname: Katsuyoshi surname: Kakinuma fullname: Kakinuma, Katsuyoshi organization: University of Yamanashi – sequence: 5 givenname: Fanghua surname: Liu fullname: Liu, Fanghua organization: University of Yamanashi – sequence: 6 givenname: Vikrant surname: Yadav fullname: Yadav, Vikrant organization: University of Yamanashi – sequence: 7 givenname: Fang surname: Xian fullname: Xian, Fang organization: University of Yamanashi – sequence: 8 givenname: Lin surname: Guo fullname: Guo, Lin organization: University of Yamanashi – sequence: 9 givenname: Chun Yik surname: Wong fullname: Wong, Chun Yik organization: University of Yamanashi – sequence: 10 givenname: Toshio surname: Iwataki fullname: Iwataki, Toshio organization: University of Yamanashi – sequence: 11 givenname: Makoto surname: Uchida fullname: Uchida, Makoto organization: University of Yamanashi |
BookMark | eNo9UclOHDEQtSIisSRXziXl3OClZ9yd26g1wEgskRiUY8ttV4OJxx7sHqBv_AM_wLfxJXhExKnqVb1Xi94-2fHBIyGHjB4xSvnxSun1Eae8zIBPv5E9NuGsELWY7OQ81womJnyX7Kd0TymtaC33yNu871EPEHpYqveX16W94nCpfFirOFjtMIH1MPM2eJg_6zvlbxEucNVF5TH9hsVqHcMjGjgbTQzP1iAsMrUJ3mz0YB_tMILyJku2WquVg-shor8d7qAPEWbun3LWI_xVA0aYu3xMDG5MNkGDzqUf5HuvXMKf_-MBuTmZL5uz4vzqdNHMzgvPpZwWopfINOWSm1IoWSnWlWZiFOsrZWqdmygQS6wkrztuhC47NMiNFl2pS8nEAfn1OTf_87DBNLT3YRN9XtkKNq1kVdN6y6o_WU_W4diuo12pOLaMtlsL2q0F7ZcF7cWs-fOFxAeqhoKS |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Macromolecular Chemistry and Physics published by Wiley‐VCH GmbH 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Macromolecular Chemistry and Physics published by Wiley‐VCH GmbH – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/macp.202400226 |
DatabaseName | Wiley Online Library Open Access Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3935 |
EndPage | n/a |
ExternalDocumentID | MACP202400226 |
Genre | article |
GrantInformation_xml | – fundername: Japan Science and Technology Corporation funderid: GteX‐JPMJGX23H2 – fundername: Grants‐in‐Aid for Scientific Research funderid: 22F22035; 23KF0037; 23H02058 – fundername: MEXT Program: Data Creation and Utilization Type Material Research and Development Project funderid: JPMXP1122712807 – fundername: JKA promotion funds from KEIRIN RACE |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT 7SR 7U5 8FD AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-n2776-3f7e1c0272d43a78a1b4d5da1f8ad9c7e1e3ee4e8729b2d3c4bede2dc3b4c4713 |
IEDL.DBID | DR2 |
ISSN | 1022-1352 |
IngestDate | Sat Aug 23 12:43:47 EDT 2025 Fri Feb 21 09:20:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-n2776-3f7e1c0272d43a78a1b4d5da1f8ad9c7e1e3ee4e8729b2d3c4bede2dc3b4c4713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5713-2635 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.202400226 |
PQID | 3168789091 |
PQPubID | 2034252 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3168789091 wiley_primary_10_1002_macp_202400226_MACP202400226 |
PublicationCentury | 2000 |
PublicationDate | February 2025 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular chemistry and physics |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 8 2021; 6 2019; 4 2022; 173 2013; 3 2015; 4 2021; 2 2000; 69 2019; 52 2023; 6 2015; 487 2023; 8 2020; 81 2024; 141 2024; 53 2023; 1 2024; 11 2024; 486 2020; 11 2011; 196 1985; 22 2017; 9 2016; 4 2021; 13 2010; 43 2023; 62 2010; 20 2018; 3 2020; 3 2013; 38 2022; 5 2022; 61 2024; 93 2019; 412 2022; 12 2023; 610 2016; 116 2009; 186 2008; 112 2012; 45 2012; 5 |
References_xml | – volume: 3 year: 2018 publication-title: ACS Omega – volume: 81 start-page: 124 year: 2020 publication-title: J. Ind. Eng. Chem. – volume: 487 start-page: 99 year: 2015 publication-title: J. Membr. Sci. – volume: 20 start-page: 8139 year: 2010 publication-title: J. Mater. Chem. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2021 publication-title: ACS Omega – volume: 8 year: 2023 publication-title: ACS Omega – volume: 112 start-page: 3179 year: 2008 publication-title: J. Phys. Chem. C. – volume: 69 start-page: 175 year: 2000 publication-title: Polym. Degrad. Stab. – volume: 5 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 3 year: 2013 publication-title: RSC Adv. – volume: 116 start-page: 3594 year: 2016 publication-title: Chem. Rev. – volume: 4 start-page: 392 year: 2019 publication-title: Nat. Energy – volume: 5 start-page: 348 year: 2022 publication-title: Electrochem. Energy Rev. – volume: 45 start-page: 2411 year: 2012 publication-title: Macromolecules – volume: 2 start-page: 7064 year: 2021 publication-title: Mater. Adv. – volume: 610 year: 2023 publication-title: Appl. Surf. Sci. – volume: 1 year: 2023 publication-title: Sustain. Polym. Energy – volume: 186 start-page: 328 year: 2009 publication-title: J. Power Sources – volume: 3 start-page: 469 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 38 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 5 start-page: 981 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 11 start-page: 3812 year: 2020 publication-title: Polym. Chem. – volume: 52 start-page: 2745 year: 2019 publication-title: Acc. Chem. Res. – volume: 43 start-page: 2349 year: 2010 publication-title: Macromolecules – volume: 4 start-page: 453 year: 2015 publication-title: ACS Macro Lett. – volume: 4 start-page: 2340 year: 2016 publication-title: J. Mater. Chem. A. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 141 year: 2024 publication-title: J. Appl. Polym. Sci. – volume: 196 start-page: 4445 year: 2011 publication-title: J. Power Sources – volume: 5 start-page: 7888 year: 2012 publication-title: Energy Environ. Sci. – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 6 year: 2023 publication-title: ACS Appl. Energy Mater. – volume: 412 start-page: 586 year: 2019 publication-title: J. Power Sources – volume: 22 start-page: 325 year: 1985 publication-title: J. Membr. Sci. – volume: 8 start-page: 5708 year: 2017 publication-title: Polym. Chem. – volume: 53 start-page: 5704 year: 2024 publication-title: Chem. Soc. Rev. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A. – volume: 61 year: 2022 publication-title: Ind. Eng. Chem. Res. – volume: 12 year: 2022 publication-title: ACS Catal. – volume: 486 year: 2024 publication-title: Electrochim. Acta – volume: 93 start-page: 478 year: 2024 publication-title: J. Energy Chem. – volume: 173 year: 2022 publication-title: Eur. Polym. J. |
SSID | ssj0008097 |
Score | 2.4334373 |
Snippet | To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | alkaline water electrolyzers anion exchange membranes Anion exchanging Chemistry composite membranes Copolymers Electrolysis Electrolytic cells hydroxide ion conductivity mechanical robustness Membranes Ta–TiO2 Titanium dioxide |
Title | Effect of Ta–TiO2 Nanoparticles in Anion Exchange Membranes: Improved Hydroxide Ion Conductivity and Mechanical Strength for Alkaline Water Electrolysis Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.202400226 https://www.proquest.com/docview/3168789091 |
Volume | 226 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYoF7j0RVEpD82h14XY6-yjt2gVFCqlRSio3FZ-zLYRwalIkFpO_Q_9A_1t_BJm1kmAHtvjandWtsYef7Znvk-I950mbazrdhOpvEp07kxisckTmZXGM1-dbw_0h5-ywbn-eNG9eFTFH_khVgduPDPaeM0T3NjZ0QNp6JVxzDfJOZAEISgIc8IWo6KzB_6oohPVVThlXRLUWLI2dtTRU_Mn-PIxSm2XmeMXwiwbGLNLLg9v5vbQ3f7F3fg_PXgpni8wKPTioHkl1jC8FhvVUvptS_yJnMYwbWBk7n79Ho0_K6A4TBvsRR4djAP0AvkU-j9i7TAM8YoaQ5HzA8STCvQw-OmpI2OPcEKfVtPA7LKtXAWY4MmEbXmYAN-Oh6_zb0AgGnqTS8Pdgy-EhK-hH6V6WvIUqHAymb0R58f9UTVIFlIOSVB5niVpk6N0tAVWXqcmL4y02ne9kU1hfOnoJaaIGgvC-lb51GmLHpV3qdWO1s90W6yHacC3AhpnS4KlFGyw0PS7UucWpfaZkc4pme2IvaUr68V8nNUsz8Ulv6XcEar1Sf09snnUkbdZ1eyNeuWNetirTldP7_7FaFdsKhYLblO898T6_PoG9wnBzO2BeKb06UE7Vu8BBEztpA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELagHMqFf0RpgTlw3Tb2OvvTW7RNlUJTEEoFt5V_ZkvU1EFtKgEn3oEX4Nn6JMyssynlCMfV7qxsjT3-PB5_nxCve03aWNfvJ1J5lejcmcRikycyK41nvjrfJvTHR9noWL_51O-qCfkuTOSHWCXceGa08ZonOCekd65ZQ8-MY8JJLoIkDHFb3GFZb6bP3_twzSBV9KK-ChetSwIbHW9jT-3ctL-BMP_Eqe1Cs39f2K6Jsb7kdPtyYbfd97_YG_-rDw_EvSUMhUEcNw_FLQyPxHrVqb89Fr8irTHMG5iYqx8_J9N3CigU0x57WUoH0wCDQG6F4dd4fRjGeEatoeC5CzFZgR5G3zz1ZOoRDujTah6YYLZVrAATPJmwLY8U4APycLL4DISjYTA7Ndw_-Ehg-ByGUa2n5U-BCmeziyfieH84qUbJUs0hCSrPsyRtcpSOdsHK69TkhZFW-743simMLx29xBRRY0Fw3yqfOm3Ro_IutdrREpo-FWthHvCZgMbZkpApxRssNP2u1LlFqX1mpHNKZhtiq_NlvZySFzUrdPGt31JuCNU6pf4SCT3qSN2savZGvfJGPR5U71dPz__F6JVYH03Gh_XhwdHbTXFXsXZwW_G9JdYW55f4ggDNwr5sh-xvQibw6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5BkQoXRGkRhULnwNVqdr3xD7fIJEqhaXNI1d6s_RmXiHRTpUEqN96BF-DZeBJmvElorxwteyx5xjv77e7M9wnxodOkjXXdbiKVV4nOnUksNnkis9J45qvz7Yb-6DQbnuvPl93Le138kR9is-HGI6PN1zzAb3xz9I809No45pvkGkiCEI_FEz7x46IupcebXFx0orwK16xLwhpr2saOOnpo_wBg3oep7TwzeCGerwAi9GJEd8QjDC_F02qty7YrfkfCYZg3MDF_fv6aTM8UUJKk1e-qyA2mAXqBHA79u9jYCyO8pm-ltPYR4jYCehj-8Iv53dQjHNOj1Tww9WurJQEmeDJhW44h8NF1uFp-BUK40Jt9M-w9uCCYuoB-1NFpmU2gwtnsdk-cD_qTapisdBaSoPI8S9ImR-lofaq8Tk1eGGm173ojm8L40tFNTBE1FgTErfKp0xY9Ku9Sqx1NbukrsRXmAV8LaJwtCTNSJsBC0-tKnVuU2mdGOqdkti8O1m6uV4PltmbtLO7HLeW-UK3r65tItVFHUmVVc7DqTbDqUa8ab67e_I_RodgefxrUJ8enX96KZ4pFfdtS7AOxtVx8x3eENJb2ffsz_QVMWM4_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Ta%E2%80%93TiO2+Nanoparticles+in+Anion+Exchange+Membranes%3A+Improved+Hydroxide+Ion+Conductivity+and+Mechanical+Strength+for+Alkaline+Water+Electrolysis+Cells&rft.jtitle=Macromolecular+chemistry+and+physics&rft.au=Mahmoud%2C+Ahmed+Mohamed+Ahmed&rft.au=Miyatake%2C+Kenji&rft.au=Tsujii%2C+Kaito&rft.au=Kakinuma%2C+Katsuyoshi&rft.date=2025-02-01&rft.issn=1022-1352&rft.eissn=1521-3935&rft.volume=226&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmacp.202400226&rft.externalDBID=10.1002%252Fmacp.202400226&rft.externalDocID=MACP202400226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1352&client=summon |