Effect of Ta–TiO2 Nanoparticles in Anion Exchange Membranes: Improved Hydroxide Ion Conductivity and Mechanical Strength for Alkaline Water Electrolysis Cells

To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated. Flexible QPAF‐4/Ta–TiO2 composite membranes are obtained using solution‐casting and die coating methods. Cross‐sectional scanning electron microsco...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular chemistry and physics Vol. 226; no. 4
Main Authors Mahmoud, Ahmed Mohamed Ahmed, Miyatake, Kenji, Tsujii, Kaito, Kakinuma, Katsuyoshi, Liu, Fanghua, Yadav, Vikrant, Xian, Fang, Guo, Lin, Wong, Chun Yik, Iwataki, Toshio, Uchida, Makoto
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated. Flexible QPAF‐4/Ta–TiO2 composite membranes are obtained using solution‐casting and die coating methods. Cross‐sectional scanning electron microscopy reveals that the die coating method produces a more homogenous and uniform distribution of Ta–TiO2 particles in the composite membranes than the solution‐casting method. The Ta‐TiO2 particles promotes the suppression of water absorbability and dimensional swelling of the composite membranes which is more pronounced in the die coated membranes. The Ta–TiO2 increase hydroxide ion conductivity to 116.9 mS cm−1 at 80 °C for the die‐coated membrane, surpassing that of the pristine QPAF‐4 membrane (92 mS cm−1). Ta–TiO2 with the composite membranes survive in 4 m KOH at 80 °C for 1000 h, maintaining 96–112 mS cm−1 (88–99% remaining) of initial conductivity. All composite membranes exhibit higher mechanical robustness (elongation of >200%), with the die‐coated composite membranes. The optimized die coated composite membrane is fabricated in an alkaline water electrolysis cell achieving 1.63 V at 1.0 A cm−2 (75.5% efficiency). The effect of Ta–TiO2 nanoparticles as metal oxide fillers for anion exchange membranes is investigated. The resulting composite membranes exhibit enhanced hydroxide ion conductivity and mechanical robustness. The optimized composite membrane is applied to an alkaline water electrolysis cell with NiFeO cathode catalyst and 1 m KOH at 80 °C to achieve high performance.
AbstractList To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated. Flexible QPAF‐4/Ta–TiO2 composite membranes are obtained using solution‐casting and die coating methods. Cross‐sectional scanning electron microscopy reveals that the die coating method produces a more homogenous and uniform distribution of Ta–TiO2 particles in the composite membranes than the solution‐casting method. The Ta‐TiO2 particles promotes the suppression of water absorbability and dimensional swelling of the composite membranes which is more pronounced in the die coated membranes. The Ta–TiO2 increase hydroxide ion conductivity to 116.9 mS cm−1 at 80 °C for the die‐coated membrane, surpassing that of the pristine QPAF‐4 membrane (92 mS cm−1). Ta–TiO2 with the composite membranes survive in 4 m KOH at 80 °C for 1000 h, maintaining 96–112 mS cm−1 (88–99% remaining) of initial conductivity. All composite membranes exhibit higher mechanical robustness (elongation of >200%), with the die‐coated composite membranes. The optimized die coated composite membrane is fabricated in an alkaline water electrolysis cell achieving 1.63 V at 1.0 A cm−2 (75.5% efficiency). The effect of Ta–TiO2 nanoparticles as metal oxide fillers for anion exchange membranes is investigated. The resulting composite membranes exhibit enhanced hydroxide ion conductivity and mechanical robustness. The optimized composite membrane is applied to an alkaline water electrolysis cell with NiFeO cathode catalyst and 1 m KOH at 80 °C to achieve high performance.
To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated. Flexible QPAF‐4/Ta–TiO2 composite membranes are obtained using solution‐casting and die coating methods. Cross‐sectional scanning electron microscopy reveals that the die coating method produces a more homogenous and uniform distribution of Ta–TiO2 particles in the composite membranes than the solution‐casting method. The Ta‐TiO2 particles promotes the suppression of water absorbability and dimensional swelling of the composite membranes which is more pronounced in the die coated membranes. The Ta–TiO2 increase hydroxide ion conductivity to 116.9 mS cm−1 at 80 °C for the die‐coated membrane, surpassing that of the pristine QPAF‐4 membrane (92 mS cm−1). Ta–TiO2 with the composite membranes survive in 4 m KOH at 80 °C for 1000 h, maintaining 96–112 mS cm−1 (88–99% remaining) of initial conductivity. All composite membranes exhibit higher mechanical robustness (elongation of >200%), with the die‐coated composite membranes. The optimized die coated composite membrane is fabricated in an alkaline water electrolysis cell achieving 1.63 V at 1.0 A cm−2 (75.5% efficiency).
Author Kakinuma, Katsuyoshi
Tsujii, Kaito
Yadav, Vikrant
Iwataki, Toshio
Mahmoud, Ahmed Mohamed Ahmed
Liu, Fanghua
Miyatake, Kenji
Uchida, Makoto
Guo, Lin
Xian, Fang
Wong, Chun Yik
Author_xml – sequence: 1
  givenname: Ahmed Mohamed Ahmed
  surname: Mahmoud
  fullname: Mahmoud, Ahmed Mohamed Ahmed
  organization: Sohag University
– sequence: 2
  givenname: Kenji
  orcidid: 0000-0001-5713-2635
  surname: Miyatake
  fullname: Miyatake, Kenji
  email: miyatake@yamanashi.ac.jp
  organization: Waseda University
– sequence: 3
  givenname: Kaito
  surname: Tsujii
  fullname: Tsujii, Kaito
  organization: University of Yamanashi
– sequence: 4
  givenname: Katsuyoshi
  surname: Kakinuma
  fullname: Kakinuma, Katsuyoshi
  organization: University of Yamanashi
– sequence: 5
  givenname: Fanghua
  surname: Liu
  fullname: Liu, Fanghua
  organization: University of Yamanashi
– sequence: 6
  givenname: Vikrant
  surname: Yadav
  fullname: Yadav, Vikrant
  organization: University of Yamanashi
– sequence: 7
  givenname: Fang
  surname: Xian
  fullname: Xian, Fang
  organization: University of Yamanashi
– sequence: 8
  givenname: Lin
  surname: Guo
  fullname: Guo, Lin
  organization: University of Yamanashi
– sequence: 9
  givenname: Chun Yik
  surname: Wong
  fullname: Wong, Chun Yik
  organization: University of Yamanashi
– sequence: 10
  givenname: Toshio
  surname: Iwataki
  fullname: Iwataki, Toshio
  organization: University of Yamanashi
– sequence: 11
  givenname: Makoto
  surname: Uchida
  fullname: Uchida, Makoto
  organization: University of Yamanashi
BookMark eNo9UclOHDEQtSIisSRXziXl3OClZ9yd26g1wEgskRiUY8ttV4OJxx7sHqBv_AM_wLfxJXhExKnqVb1Xi94-2fHBIyGHjB4xSvnxSun1Eae8zIBPv5E9NuGsELWY7OQ81womJnyX7Kd0TymtaC33yNu871EPEHpYqveX16W94nCpfFirOFjtMIH1MPM2eJg_6zvlbxEucNVF5TH9hsVqHcMjGjgbTQzP1iAsMrUJ3mz0YB_tMILyJku2WquVg-shor8d7qAPEWbun3LWI_xVA0aYu3xMDG5MNkGDzqUf5HuvXMKf_-MBuTmZL5uz4vzqdNHMzgvPpZwWopfINOWSm1IoWSnWlWZiFOsrZWqdmygQS6wkrztuhC47NMiNFl2pS8nEAfn1OTf_87DBNLT3YRN9XtkKNq1kVdN6y6o_WU_W4diuo12pOLaMtlsL2q0F7ZcF7cWs-fOFxAeqhoKS
ContentType Journal Article
Copyright 2024 The Author(s). Macromolecular Chemistry and Physics published by Wiley‐VCH GmbH
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Macromolecular Chemistry and Physics published by Wiley‐VCH GmbH
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
7SR
7U5
8FD
JG9
L7M
DOI 10.1002/macp.202400226
DatabaseName Wiley Online Library Open Access
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3935
EndPage n/a
ExternalDocumentID MACP202400226
Genre article
GrantInformation_xml – fundername: Japan Science and Technology Corporation
  funderid: GteX‐JPMJGX23H2
– fundername: Grants‐in‐Aid for Scientific Research
  funderid: 22F22035; 23KF0037; 23H02058
– fundername: MEXT Program: Data Creation and Utilization Type Material Research and Development Project
  funderid: JPMXP1122712807
– fundername: JKA promotion funds from KEIRIN RACE
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
7SR
7U5
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-n2776-3f7e1c0272d43a78a1b4d5da1f8ad9c7e1e3ee4e8729b2d3c4bede2dc3b4c4713
IEDL.DBID DR2
ISSN 1022-1352
IngestDate Sat Aug 23 12:43:47 EDT 2025
Fri Feb 21 09:20:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-n2776-3f7e1c0272d43a78a1b4d5da1f8ad9c7e1e3ee4e8729b2d3c4bede2dc3b4c4713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5713-2635
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.202400226
PQID 3168789091
PQPubID 2034252
PageCount 9
ParticipantIDs proquest_journals_3168789091
wiley_primary_10_1002_macp_202400226_MACP202400226
PublicationCentury 2000
PublicationDate February 2025
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular chemistry and physics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 8
2021; 6
2019; 4
2022; 173
2013; 3
2015; 4
2021; 2
2000; 69
2019; 52
2023; 6
2015; 487
2023; 8
2020; 81
2024; 141
2024; 53
2023; 1
2024; 11
2024; 486
2020; 11
2011; 196
1985; 22
2017; 9
2016; 4
2021; 13
2010; 43
2023; 62
2010; 20
2018; 3
2020; 3
2013; 38
2022; 5
2022; 61
2024; 93
2019; 412
2022; 12
2023; 610
2016; 116
2009; 186
2008; 112
2012; 45
2012; 5
References_xml – volume: 3
  year: 2018
  publication-title: ACS Omega
– volume: 81
  start-page: 124
  year: 2020
  publication-title: J. Ind. Eng. Chem.
– volume: 487
  start-page: 99
  year: 2015
  publication-title: J. Membr. Sci.
– volume: 20
  start-page: 8139
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2021
  publication-title: ACS Omega
– volume: 8
  year: 2023
  publication-title: ACS Omega
– volume: 112
  start-page: 3179
  year: 2008
  publication-title: J. Phys. Chem. C.
– volume: 69
  start-page: 175
  year: 2000
  publication-title: Polym. Degrad. Stab.
– volume: 5
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  year: 2013
  publication-title: RSC Adv.
– volume: 116
  start-page: 3594
  year: 2016
  publication-title: Chem. Rev.
– volume: 4
  start-page: 392
  year: 2019
  publication-title: Nat. Energy
– volume: 5
  start-page: 348
  year: 2022
  publication-title: Electrochem. Energy Rev.
– volume: 45
  start-page: 2411
  year: 2012
  publication-title: Macromolecules
– volume: 2
  start-page: 7064
  year: 2021
  publication-title: Mater. Adv.
– volume: 610
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 1
  year: 2023
  publication-title: Sustain. Polym. Energy
– volume: 186
  start-page: 328
  year: 2009
  publication-title: J. Power Sources
– volume: 3
  start-page: 469
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 38
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  start-page: 981
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 11
  start-page: 3812
  year: 2020
  publication-title: Polym. Chem.
– volume: 52
  start-page: 2745
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 43
  start-page: 2349
  year: 2010
  publication-title: Macromolecules
– volume: 4
  start-page: 453
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 4
  start-page: 2340
  year: 2016
  publication-title: J. Mater. Chem. A.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  year: 2024
  publication-title: J. Appl. Polym. Sci.
– volume: 196
  start-page: 4445
  year: 2011
  publication-title: J. Power Sources
– volume: 5
  start-page: 7888
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 6
  year: 2023
  publication-title: ACS Appl. Energy Mater.
– volume: 412
  start-page: 586
  year: 2019
  publication-title: J. Power Sources
– volume: 22
  start-page: 325
  year: 1985
  publication-title: J. Membr. Sci.
– volume: 8
  start-page: 5708
  year: 2017
  publication-title: Polym. Chem.
– volume: 53
  start-page: 5704
  year: 2024
  publication-title: Chem. Soc. Rev.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A.
– volume: 61
  year: 2022
  publication-title: Ind. Eng. Chem. Res.
– volume: 12
  year: 2022
  publication-title: ACS Catal.
– volume: 486
  year: 2024
  publication-title: Electrochim. Acta
– volume: 93
  start-page: 478
  year: 2024
  publication-title: J. Energy Chem.
– volume: 173
  year: 2022
  publication-title: Eur. Polym. J.
SSID ssj0008097
Score 2.4334373
Snippet To improve the properties of quaternized QPAF‐4 copolymers as anion exchange membranes, compositing with hydrophilic Ta–TiO2 particles are investigated....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms alkaline water electrolyzers
anion exchange membranes
Anion exchanging
Chemistry
composite membranes
Copolymers
Electrolysis
Electrolytic cells
hydroxide ion conductivity
mechanical robustness
Membranes
Ta–TiO2
Titanium dioxide
Title Effect of Ta–TiO2 Nanoparticles in Anion Exchange Membranes: Improved Hydroxide Ion Conductivity and Mechanical Strength for Alkaline Water Electrolysis Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.202400226
https://www.proquest.com/docview/3168789091
Volume 226
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYoF7j0RVEpD82h14XY6-yjt2gVFCqlRSio3FZ-zLYRwalIkFpO_Q_9A_1t_BJm1kmAHtvjandWtsYef7Znvk-I950mbazrdhOpvEp07kxisckTmZXGM1-dbw_0h5-ywbn-eNG9eFTFH_khVgduPDPaeM0T3NjZ0QNp6JVxzDfJOZAEISgIc8IWo6KzB_6oohPVVThlXRLUWLI2dtTRU_Mn-PIxSm2XmeMXwiwbGLNLLg9v5vbQ3f7F3fg_PXgpni8wKPTioHkl1jC8FhvVUvptS_yJnMYwbWBk7n79Ho0_K6A4TBvsRR4djAP0AvkU-j9i7TAM8YoaQ5HzA8STCvQw-OmpI2OPcEKfVtPA7LKtXAWY4MmEbXmYAN-Oh6_zb0AgGnqTS8Pdgy-EhK-hH6V6WvIUqHAymb0R58f9UTVIFlIOSVB5niVpk6N0tAVWXqcmL4y02ne9kU1hfOnoJaaIGgvC-lb51GmLHpV3qdWO1s90W6yHacC3AhpnS4KlFGyw0PS7UucWpfaZkc4pme2IvaUr68V8nNUsz8Ulv6XcEar1Sf09snnUkbdZ1eyNeuWNetirTldP7_7FaFdsKhYLblO898T6_PoG9wnBzO2BeKb06UE7Vu8BBEztpA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELagHMqFf0RpgTlw3Tb2OvvTW7RNlUJTEEoFt5V_ZkvU1EFtKgEn3oEX4Nn6JMyssynlCMfV7qxsjT3-PB5_nxCve03aWNfvJ1J5lejcmcRikycyK41nvjrfJvTHR9noWL_51O-qCfkuTOSHWCXceGa08ZonOCekd65ZQ8-MY8JJLoIkDHFb3GFZb6bP3_twzSBV9KK-ChetSwIbHW9jT-3ctL-BMP_Eqe1Cs39f2K6Jsb7kdPtyYbfd97_YG_-rDw_EvSUMhUEcNw_FLQyPxHrVqb89Fr8irTHMG5iYqx8_J9N3CigU0x57WUoH0wCDQG6F4dd4fRjGeEatoeC5CzFZgR5G3zz1ZOoRDujTah6YYLZVrAATPJmwLY8U4APycLL4DISjYTA7Ndw_-Ehg-ByGUa2n5U-BCmeziyfieH84qUbJUs0hCSrPsyRtcpSOdsHK69TkhZFW-743simMLx29xBRRY0Fw3yqfOm3Ro_IutdrREpo-FWthHvCZgMbZkpApxRssNP2u1LlFqX1mpHNKZhtiq_NlvZySFzUrdPGt31JuCNU6pf4SCT3qSN2savZGvfJGPR5U71dPz__F6JVYH03Gh_XhwdHbTXFXsXZwW_G9JdYW55f4ggDNwr5sh-xvQibw6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5BkQoXRGkRhULnwNVqdr3xD7fIJEqhaXNI1d6s_RmXiHRTpUEqN96BF-DZeBJmvElorxwteyx5xjv77e7M9wnxodOkjXXdbiKVV4nOnUksNnkis9J45qvz7Yb-6DQbnuvPl93Le138kR9is-HGI6PN1zzAb3xz9I809No45pvkGkiCEI_FEz7x46IupcebXFx0orwK16xLwhpr2saOOnpo_wBg3oep7TwzeCGerwAi9GJEd8QjDC_F02qty7YrfkfCYZg3MDF_fv6aTM8UUJKk1e-qyA2mAXqBHA79u9jYCyO8pm-ltPYR4jYCehj-8Iv53dQjHNOj1Tww9WurJQEmeDJhW44h8NF1uFp-BUK40Jt9M-w9uCCYuoB-1NFpmU2gwtnsdk-cD_qTapisdBaSoPI8S9ImR-lofaq8Tk1eGGm173ojm8L40tFNTBE1FgTErfKp0xY9Ku9Sqx1NbukrsRXmAV8LaJwtCTNSJsBC0-tKnVuU2mdGOqdkti8O1m6uV4PltmbtLO7HLeW-UK3r65tItVFHUmVVc7DqTbDqUa8ab67e_I_RodgefxrUJ8enX96KZ4pFfdtS7AOxtVx8x3eENJb2ffsz_QVMWM4_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Ta%E2%80%93TiO2+Nanoparticles+in+Anion+Exchange+Membranes%3A+Improved+Hydroxide+Ion+Conductivity+and+Mechanical+Strength+for+Alkaline+Water+Electrolysis+Cells&rft.jtitle=Macromolecular+chemistry+and+physics&rft.au=Mahmoud%2C+Ahmed+Mohamed+Ahmed&rft.au=Miyatake%2C+Kenji&rft.au=Tsujii%2C+Kaito&rft.au=Kakinuma%2C+Katsuyoshi&rft.date=2025-02-01&rft.issn=1022-1352&rft.eissn=1521-3935&rft.volume=226&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmacp.202400226&rft.externalDBID=10.1002%252Fmacp.202400226&rft.externalDocID=MACP202400226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1352&client=summon