Characterization of certain types of $r$-plateaued functions

We study a subclass of $p$-ary functions in $n$ variables, denoted by ${\mathcal A}_n$, which is a collection of $p$-ary functions in $n$ variables satisfying a certain condition on the exponents of its monomial terms. Firstly, we completely classify all $p$-ary $(n-1)$-plateaued functions in $n$ va...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Mathematical Society pp. 1469 - 1483
Main Authors 현종윤, 이정연, 이윤진
Format Journal Article
LanguageEnglish
Published 대한수학회 01.01.2018
Subjects
Online AccessGet full text
ISSN0304-9914
2234-3008
DOI10.4134/JKMS.j170763

Cover

Loading…
Abstract We study a subclass of $p$-ary functions in $n$ variables, denoted by ${\mathcal A}_n$, which is a collection of $p$-ary functions in $n$ variables satisfying a certain condition on the exponents of its monomial terms. Firstly, we completely classify all $p$-ary $(n-1)$-plateaued functions in $n$ variables by proving that every $(n-1)$-plateaued function should be contained in $\mathcal{A}_n$. Secondly, we prove that if $f$ is a $p$-ary $r$-plateaued function contained in ${\mathcal A}_n$ with $\deg{f} > 1+\frac{n-r}{4}(p-1)$, then the highest degree term of $f$ is only a single term. Furthermore, we prove that there is no $p$-ary $r$-plateaued function in ${\mathcal A}_n$ with maximum degree $(p-1)\frac{n-r}{2}+1$. As application, we partially classify all $(n-2)$-plateaued functions in ${\mathcal A}_n$ when $p=3,5,$ and $7$, and $p$-ary bent functions in ${\mathcal A}_2$ are completely classified for the cases $p=3$ and $5$. KCI Citation Count: 0
AbstractList We study a subclass of $p$-ary functions in $n$ variables, denoted by ${\mathcal A}_n$, which is a collection of $p$-ary functions in $n$ variables satisfying a certain condition on the exponents of its monomial terms. Firstly, we completely classify all $p$-ary $(n-1)$-plateaued functions in $n$ variables by proving that every $(n-1)$-plateaued function should be contained in $\mathcal{A}_n$. Secondly, we prove that if $f$ is a $p$-ary $r$-plateaued function contained in ${\mathcal A}_n$ with $\deg{f} > 1+\frac{n-r}{4}(p-1)$, then the highest degree term of $f$ is only a single term. Furthermore, we prove that there is no $p$-ary $r$-plateaued function in ${\mathcal A}_n$ with maximum degree $(p-1)\frac{n-r}{2}+1$. As application, we partially classify all $(n-2)$-plateaued functions in ${\mathcal A}_n$ when $p=3,5,$ and $7$, and $p$-ary bent functions in ${\mathcal A}_2$ are completely classified for the cases $p=3$ and $5$. KCI Citation Count: 0
Author 이윤진
이정연
현종윤
Author_xml – sequence: 1
  fullname: 현종윤
  organization: (한국과학기술원부설고등과학원)
– sequence: 2
  fullname: 이정연
  organization: (강원대학교)
– sequence: 3
  fullname: 이윤진
  organization: (이화여자대학교)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002396172$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjU1PwzAQRC1UJNLCjR-QQy8cUtbepPZKXKqIj0IREpRz5DprSFs5VeIe4NfTAqcnjebNDMUgtIGFuJQwySXm149Pz2-TtdSgp3giEqUwzxDADEQCCHlGJPMzMez7NUBeKKJE3JSftrMuctd829i0IW196riLtglp_NpxfwzG3TjbbW1ku-c69fvgjtX-XJx6u-354p8j8X53uywfssXL_bycLbIgDcUMpS-Y2PDh34PhggtTkybQCmtrCKUls3IOixWQUt5w7UHZ2pP1_iDiSFz97YbOVxvXVK1tfvnRVpuumr0u5xVqjUBT_AHtEE36
ContentType Journal Article
DBID ACYCR
DOI 10.4134/JKMS.j170763
DatabaseName Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2234-3008
EndPage 1483
ExternalDocumentID oai_kci_go_kr_ARTI_3773096
GroupedDBID 2WC
5GY
9ZL
ACIPV
ACYCR
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
FRP
JDI
KHM
KVFHK
OK1
TR2
YYP
ID FETCH-LOGICAL-n189t-31f5e9e8e991f08e5e58d9790723da8931a98bcc35b0922f8edf02adf9affe9e3
ISSN 0304-9914
IngestDate Tue Nov 21 21:44:46 EST 2023
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n189t-31f5e9e8e991f08e5e58d9790723da8931a98bcc35b0922f8edf02adf9affe9e3
PageCount 15
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_3773096
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of the Korean Mathematical Society
PublicationYear 2018
Publisher 대한수학회
Publisher_xml – name: 대한수학회
SSID ssj0045299
Score 2.0752723
Snippet We study a subclass of $p$-ary functions in $n$ variables, denoted by ${\mathcal A}_n$, which is a collection of $p$-ary functions in $n$ variables satisfying...
SourceID nrf
SourceType Open Website
StartPage 1469
SubjectTerms 수학
Title Characterization of certain types of $r$-plateaued functions
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002396172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 대한수학회지, 2018, 55(6), , pp.1469-1483
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuMBh2vghGGyKUH3McBInsSUubVe0UZULm7Rb5Tg2GkMJCu1lfxF_Ju_ZbZKVIg0ukfX0HNn-nvw-P9vPhAwjrrhRrAg1kIOQK1iwKm2zMIsjoP_G2EzhReH55-z8in-6Tq8Hg1-9U0urZXGq73beK_kfVEEGuOIt2X9Atv0pCKAM-MIXEIbvgzCetNmW71rmp_0ev4utumMaNOaACg9_fAdaqVZAMNGXdXG6P5kpctFZ3WCMft5mdcWsIXWbNgQxotMzKgUVnE4ndBRTkWJBQpl3KiA4o2Ovwqj0Kjkds50qrrLTzal_020TkYjEVkSCTsdUTPCgBjYjxapQTwhs0loiXWEEar3pLmE8BLbqf26cDLgL7tsw0ZtiYWqXPXcNy7lklysA58zxlevZ_Mvptyhnm3n0XsbtLU94L-f2rb5ZfK0Xt80CVhYXiySHuVBmj8jjOM_9gYCL2cbn4-619PtVvg_-igW24X2_BUBgqsb2CMzlAdlf4xuMvBkdkoGpnpGnHcA_n5MP2wYV1DZYG1TgDAoFw2bYGVPQGtMLcvVxejk5D9fPa4RVJOQSvK9NjTTCQIMtEyY1qShlLlkeJ6UCHhspKQqtk7RgMo6tMKVlsSqtVNZCxeQl2avqyrwiAb6AlUY64RkwQvCYMoHhYryIZAl8X5evyTvotxvSvw_t0UOU3pAnncm9JXvLZmWOgRYuixOHyG_ozlRj
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+certain+types+of+%24r%24-plateaued+functions&rft.jtitle=Journal+of+the+Korean+Mathematical+Society&rft.au=%ED%98%84%EC%A2%85%EC%9C%A4&rft.au=%EC%9D%B4%EC%A0%95%EC%97%B0&rft.au=%EC%9D%B4%EC%9C%A4%EC%A7%84&rft.date=2018-01-01&rft.pub=%EB%8C%80%ED%95%9C%EC%88%98%ED%95%99%ED%9A%8C&rft.issn=0304-9914&rft.eissn=2234-3008&rft.spage=1469&rft.epage=1483&rft_id=info:doi/10.4134%2FJKMS.j170763&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_3773096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-9914&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-9914&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-9914&client=summon