Assessing Nativelikeness of Korean College Students’ English Writing Using fastText

Neural-network models have recently been used to assess nativelikeness of English sentences written by native or nonnative speakers. In this study, nativelikeness of Korean EFL college students’ English writing is assessed using fastText, a neural-network text classifier using subword information. T...

Full description

Saved in:
Bibliographic Details
Published in영어학 Vol. 22; pp. 19 - 39
Main Author Hyesun Cho
Format Journal Article
LanguageEnglish
Published 한국영어학회 2022
Subjects
Online AccessGet full text
ISSN1598-1398
2586-7474
DOI10.15738/kjell.22..202201.19

Cover

Loading…
Abstract Neural-network models have recently been used to assess nativelikeness of English sentences written by native or nonnative speakers. In this study, nativelikeness of Korean EFL college students’ English writing is assessed using fastText, a neural-network text classifier using subword information. The training data consisted of English sentences from the corpora of native speakers of English and Korean EFL college students. The test sentences consisted of English writing assignments written by Korean EFL college students. fastText performed well for the task of binary classification into native and nonnative sentences, with high accuracy in less than a minute. The sentences that are classified as native with a high probability tend to have fewer grammatical as well as plausibility errors than those classified as nonnative. For the test sentences, correcting grammatical errors (involving articles, number, subject-verb agreement, voice) had weaker effects on the classification of the sentences than correcting plausibility errors (word choices), which conforms to the previous literature. This suggests that fastText is more sensitive to plausibility errors than grammaticality errors which requires knowledge on hierarchical syntactic structures. KCI Citation Count: 1
AbstractList Neural-network models have recently been used to assess nativelikeness of English sentences written by native or nonnative speakers. In this study, nativelikeness of Korean EFL college students’ English writing is assessed using fastText, a neural-network text classifier using subword information. The training data consisted of English sentences from the corpora of native speakers of English and Korean EFL college students. The test sentences consisted of English writing assignments written by Korean EFL college students. fastText performed well for the task of binary classification into native and nonnative sentences, with high accuracy in less than a minute. The sentences that are classified as native with a high probability tend to have fewer grammatical as well as plausibility errors than those classified as nonnative. For the test sentences, correcting grammatical errors (involving articles, number, subject-verb agreement, voice) had weaker effects on the classification of the sentences than correcting plausibility errors (word choices), which conforms to the previous literature. This suggests that fastText is more sensitive to plausibility errors than grammaticality errors which requires knowledge on hierarchical syntactic structures. KCI Citation Count: 1
Author Hyesun Cho
Author_xml – sequence: 1
  fullname: Hyesun Cho
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002808265$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjrFOwzAYhC1UJErpGzBkYWBIsH8nsT1WpUBF1UrQijFyEzuYBAfFLoKN1-D1eBJM6XSn03enO0UD21mF0DnBCckY5VfNi2rbBCBJAANgkhBxhIaQ8TxmKUsHaEgywWNCBT9BY-fMFmPggBlLh2gzcU6FzNbRUnrzrlrTKBuSqNPRfdcraaNp17aqVtGj31XKevfz9R3NbN0a9xw99cb_lTf7CS2dX6sPf4aOtWydGh90hDY3s_X0Ll6sbufTySK2hKY-1rxMda4lJeGO2PIM54rlJc5Ba1xBBSWuOM9ySkpJt1kFuSA48BXjghKq6Ahd_u_aXhdNaYpOmr3WXdH0xeRhPS-EABbgwF4c2F1vXlVlZPEWjOw_i-XqekYIBsZTTn8BYKBmbg
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.15738/kjell.22..202201.19
DatabaseName DBPIA - 디비피아
DBPIA
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2586-7474
EndPage 39
ExternalDocumentID oai_kci_go_kr_ARTI_9927313
NODE11027848
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
ACYCR
ID FETCH-LOGICAL-n134t-f8c4f6fa318209b8506e76c062ff0d2d2c0d885631ca3b5d269106fad789313e3
ISSN 1598-1398
IngestDate Tue Jun 25 21:04:18 EDT 2024
Thu Feb 06 13:32:26 EST 2025
IsPeerReviewed false
IsScholarly true
Keywords deep learning
fastText
plausibility
neural networks
grammaticality
nativelikeness
Korean EFL learners
English writing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-n134t-f8c4f6fa318209b8506e76c062ff0d2d2c0d885631ca3b5d269106fad789313e3
PageCount 21
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9927313
nurimedia_primary_NODE11027848
PublicationCentury 2000
PublicationDate 2022
2022-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle 영어학
PublicationYear 2022
Publisher 한국영어학회
Publisher_xml – name: 한국영어학회
SSID ssib002820774
ssib053377354
ssib006781546
ssib044765191
ssib036278755
Score 2.168476
Snippet Neural-network models have recently been used to assess nativelikeness of English sentences written by native or nonnative speakers. In this study,...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 19
SubjectTerms 영어와문학
Title Assessing Nativelikeness of Korean College Students’ English Writing Using fastText
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11027848
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002808265
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 영어학, 2022, 22(0), , pp.19-39
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgOcAFgQCxsKwshE8oIQ_bcY7dNqiAthxoxd6i5mFYWiWrNj3AAfE3-Hv8EmbsJM2KFa9LYlmJ7WS-jL-Z2DOEPFOl7-VxKZzYW3KH6zB2YFYsHIEL3jOpgeSjH_J0JqcL_vpMnO3TW5ndJU3m5l-u3FfyP1KFOpAr7pL9B8n2jUIFlEG-cAQJw_GvZGz_2KKxPzPxu9fnK6u6gAG-qTfoZO8cA-9sDMttt7jBRCJEB9Tz9xjWCJqwiwf0ctvMQWEPSStLxixWwDlNQbITzpIJiwWLey_C9HO53UFvH-uhGyHYm5vdHWOWjNiJYKPJb1o1hRFT46HKjMEODW0uabc0dYFQ0gFDhQ_1bNunVZStnrRTrg1n9IsyF5GJ3b76VK7XbhC4Lo7b893u3kthsmdvJwlQGfyPqq6TGwFYDZjJ4_RrMrQuvSHbhXnaF3trGKZy0F77bbqcRxL4ba_-gBhHUWjy6vXP3G7GxJG-uGKcQFiqDfCcm9UOkzXAFz8gL_M75HZrddCRhdBdcq2s7pFFDx96GT601tTCh7bwoR18fnz7Tlvg0BY41ACHdsC5TxYvk_l46rRZNpzKD3njaJVzLfUyxFD-cYYRDMtI5p4MtPaKoAhyr1BKyNDPl2EmikACw4Triwg-avShPyAHVV2VDwlFYxfod5RxtHNzlXmaR4XyltBRyIvskDyF15Gu8vMUo5rj-UOdrjYp2G6v0jgGKu2Hh-S4f1vphQ25kg6l--hPFzwmt1AC1lF2RA6aza58AtSxyY4NIH4CqDJbyw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+Nativelikeness+of+Korean+College+Students%E2%80%99+English+Writing+Using+fastText&rft.jtitle=%EC%98%81%EC%96%B4%ED%95%99&rft.au=Hyesun+Cho&rft.date=2022&rft.pub=%ED%95%9C%EA%B5%AD%EC%98%81%EC%96%B4%ED%95%99%ED%9A%8C&rft.issn=1598-1398&rft.eissn=2586-7474&rft.volume=22&rft.spage=19&rft.epage=39&rft_id=info:doi/10.15738%2Fkjell.22..202201.19&rft.externalDocID=NODE11027848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-1398&client=summon