부식 검출과 분석에 적용한 영상 처리 기술 동향

Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine lear...

Full description

Saved in:
Bibliographic Details
Published inBiuletyn Uniejowski Vol. 56; no. 6; pp. 353 - 370
Main Authors 김범수(Beomsoo Kim), 권재성(Jaesung Kwon), 양정현(Jeonghyeon Yang)
Format Journal Article
LanguageKorean
Published 한국표면공학회 2023
Subjects
Online AccessGet full text
ISSN1225-8024
2299-8403
2288-8403
DOI10.5695/JSSE.2023.56.6.353

Cover

Abstract Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis.
AbstractList Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis.
Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis. KCI Citation Count: 1
Author 권재성(Jaesung Kwon)
양정현(Jeonghyeon Yang)
김범수(Beomsoo Kim)
Author_xml – sequence: 1
  fullname: 김범수(Beomsoo Kim)
– sequence: 2
  fullname: 권재성(Jaesung Kwon)
– sequence: 3
  fullname: 양정현(Jeonghyeon Yang)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003027779$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkM9KAlEchS9hkJkv0Go2bYKxO_c3998uMStNEtL9ZcaZiUEbw6lFOyUXQYvaVBYKbgqCFmEgLXoivb5DlkGrcw58nMW3ihJRM_IRWrdwhjJJt4qVSj5DMIH5zLAMUFhCSUKkNIWNIYGSFiHUFJjYKygdx6GLgREuLcaTaHs6buvrgTEZtfW4P_n4Mqbjru4O9MOtoYcd_fQ6u-sbutfRlx1Dj3rTlzdj8vmur4bG9OZxdv-8hpYDpxH76b9MoepuvprbN0vlvUIuWzLrknJTeDUBTAoswAtcL2DUB864HVi-XXPBJ-BIn3DHdVjAPYaJRx2X-ESKmgQiAVJoc3EbtQJVr4Wq6YS_edxU9ZbKHlULysJgSyztObyxgOthfBaqyIsbqpg9KP84wtSiFpEcQP5z0XkrPPG90FGn8-K0LtRheSdvzQ0JQTl8A9keeQI
ContentType Journal Article
DBID DBRKI
TDB
JDI
ACYCR
DEWEY 671.7
DOI 10.5695/JSSE.2023.56.6.353
DatabaseName DBPIA - 디비피아
DBPIA
KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline History & Archaeology
Engineering
DocumentTitleAlternate Trends in image processing techniques applied to corrosion detection and analysis
DocumentTitle_FL Trends in image processing techniques applied to corrosion detection and analysis
EISSN 2299-8403
2288-8403
EndPage 370
ExternalDocumentID oai_kci_go_kr_ARTI_10349094
JAKO202305151297339
NODE11678857
GroupedDBID 0-V
AAAGB
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARALO
AZQEC
BENPR
BPHCQ
CCPQU
DBRKI
DWQXO
GNUQQ
GROUPED_DOAJ
M2R
OK1
PHGZT
PQQKQ
PROAC
REL
TDB
Y2W
.UV
JDI
ACYCR
ID FETCH-LOGICAL-k957-8dc83698083dfbdf65e37674f1e4cb3e23a9e27aba6f7d602d5ab2e298c932933
ISSN 1225-8024
IngestDate Sun Jun 01 03:16:58 EDT 2025
Thu Mar 07 06:05:53 EST 2024
Thu Mar 13 19:38:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Color Models
Corrosion
Machine Learning
Image Segmentation
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k957-8dc83698083dfbdf65e37674f1e4cb3e23a9e27aba6f7d602d5ab2e298c932933
Notes KISTI1.1003/JNL.JAKO202305151297339
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202305151297339&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 18
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10349094
kisti_ndsl_JAKO202305151297339
nurimedia_primary_NODE11678857
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle Biuletyn Uniejowski
PublicationTitleAlternate Journal of the Korean institute of surface engineering
PublicationYear 2023
Publisher 한국표면공학회
Publisher_xml – name: 한국표면공학회
SSID ssib036279167
ssib044738276
ssj0001528548
ssib053377541
ssib006781301
ssib051812033
ssib005300060
Score 2.2023351
Snippet Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely...
SourceID nrf
kisti
nurimedia
SourceType Open Website
Open Access Repository
Publisher
StartPage 353
SubjectTerms 기계공학
Title 부식 검출과 분석에 적용한 영상 처리 기술 동향
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11678857
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202305151297339&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003027779
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국표면공학회지, 2023, 56(6), , pp.353-370
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA9tPehFFBXrRwnonJZdk8xkPm4m2ZRaaXtold5CPktZ2UptLx6kxR4ED3pRq7TQi4LgQSoUD_5F3fR_8M1MdjetIlUvYXjz8ubNe7MzvzebeWMYt9MM4h6Rxs0CW0mTJAVuCm5lTZclqbAyUlhcHnCemaVTD8j0ors4Mvqw9tXS-lrSSp_-9lzJv3gVaOBXeUr2Lzw7EAoEKIN_4QkehuepfIxCH_lUfqwQBoj7SLQbKPSQ71QkqBOBomDkB40-O1HsBNhlQTAkrIYseRbgSkXykCdQ2EbCBQGqTvCqjmMoKBI0A1SQ6VHkBbpljnytDAdpqkE-iYSWBVxuHQsPGlBvushrK4qtKL7UwCd95d0-sxblIR4ojZnsKYwSlwJSprVtDfWiUHbwlaakUkvwYyy0kiRC6ENlF98esgRSb2FX5hFaD7AFqW-X6LPMamj_Z6dqawRMgbCw66PfrVzRHAeGJsTKuLYWYJ0FuYIVWN-PcnLFcqmQyT2m5-fDllQXCC3aGrxaTw9-Ytk-liC8ky5HSytRZzWCMOheZMusQxC4jxpnHMZs-anrzLOwNu-qPDzDeZdxgDKDeR4wDRP2EJYSwjB3hrAVIgSZN1HtZfRtoc-jyd7c-bUvEPjJaGgZ8Ft3FWDf2e66vLsCJsAallu4YJyvgjDT07-oi8ZIZ-WScbd3sFG-3DUP9zfKg53Dbz_M3sFWubVbvnttlnub5YfPR292zHJ7s3y-aZb7271PX8zD71_LF3tm79X7o7cfLxsLk-FCMNWs7hdpdoQL2CxLOaYwM3GcFUlWUDeXqY1IYeckTXDu4FjkDouTmBYso5aTuXHi5I7gKQQ9AuMrxlh3pZtfNUw3ZQ7JU5qkcU6YxeMcZzmsnhllmSBFMm5MKANE3ezJo2jauz8n7SOvV7Ll3XFYjBu3wDLKjX9wJ4gZWC56rLPRRLNz7VD-mcq5y66dSsx145xsXm8k3jDG1lbX85sArdeSCbUlNaFGy09odqAn
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EB%B6%80%EC%8B%9D+%EA%B2%80%EC%B6%9C%EA%B3%BC+%EB%B6%84%EC%84%9D%EC%97%90+%EC%A0%81%EC%9A%A9%ED%95%9C+%EC%98%81%EC%83%81+%EC%B2%98%EB%A6%AC+%EA%B8%B0%EC%88%A0+%EB%8F%99%ED%96%A5&rft.jtitle=%ED%95%9C%EA%B5%AD%ED%91%9C%EB%A9%B4%EA%B3%B5%ED%95%99%ED%9A%8C%EC%A7%80%2C+56%286%29&rft.au=%EA%B9%80%EB%B2%94%EC%88%98&rft.au=%EA%B6%8C%EC%9E%AC%EC%84%B1&rft.au=%EC%96%91%EC%A0%95%ED%98%84&rft.date=2023&rft.pub=%ED%95%9C%EA%B5%AD%ED%91%9C%EB%A9%B4%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1225-8024&rft.eissn=2288-8403&rft.spage=353&rft.epage=370&rft_id=info:doi/10.5695%2FJSSE.2023.56.6.353&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10349094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-8024&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-8024&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-8024&client=summon