부식 검출과 분석에 적용한 영상 처리 기술 동향
Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine lear...
Saved in:
Published in | Biuletyn Uniejowski Vol. 56; no. 6; pp. 353 - 370 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Korean |
Published |
한국표면공학회
2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1225-8024 2299-8403 2288-8403 |
DOI | 10.5695/JSSE.2023.56.6.353 |
Cover
Abstract | Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis. |
---|---|
AbstractList | Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis. Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis. KCI Citation Count: 1 |
Author | 권재성(Jaesung Kwon) 양정현(Jeonghyeon Yang) 김범수(Beomsoo Kim) |
Author_xml | – sequence: 1 fullname: 김범수(Beomsoo Kim) – sequence: 2 fullname: 권재성(Jaesung Kwon) – sequence: 3 fullname: 양정현(Jeonghyeon Yang) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003027779$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpFkM9KAlEchS9hkJkv0Go2bYKxO_c3998uMStNEtL9ZcaZiUEbw6lFOyUXQYvaVBYKbgqCFmEgLXoivb5DlkGrcw58nMW3ihJRM_IRWrdwhjJJt4qVSj5DMIH5zLAMUFhCSUKkNIWNIYGSFiHUFJjYKygdx6GLgREuLcaTaHs6buvrgTEZtfW4P_n4Mqbjru4O9MOtoYcd_fQ6u-sbutfRlx1Dj3rTlzdj8vmur4bG9OZxdv-8hpYDpxH76b9MoepuvprbN0vlvUIuWzLrknJTeDUBTAoswAtcL2DUB864HVi-XXPBJ-BIn3DHdVjAPYaJRx2X-ESKmgQiAVJoc3EbtQJVr4Wq6YS_edxU9ZbKHlULysJgSyztObyxgOthfBaqyIsbqpg9KP84wtSiFpEcQP5z0XkrPPG90FGn8-K0LtRheSdvzQ0JQTl8A9keeQI |
ContentType | Journal Article |
DBID | DBRKI TDB JDI ACYCR |
DEWEY | 671.7 |
DOI | 10.5695/JSSE.2023.56.6.353 |
DatabaseName | DBPIA - 디비피아 DBPIA KoreaScience Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | History & Archaeology Engineering |
DocumentTitleAlternate | Trends in image processing techniques applied to corrosion detection and analysis |
DocumentTitle_FL | Trends in image processing techniques applied to corrosion detection and analysis |
EISSN | 2299-8403 2288-8403 |
EndPage | 370 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10349094 JAKO202305151297339 NODE11678857 |
GroupedDBID | 0-V AAAGB ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ALSLI ARALO AZQEC BENPR BPHCQ CCPQU DBRKI DWQXO GNUQQ GROUPED_DOAJ M2R OK1 PHGZT PQQKQ PROAC REL TDB Y2W .UV JDI ACYCR |
ID | FETCH-LOGICAL-k957-8dc83698083dfbdf65e37674f1e4cb3e23a9e27aba6f7d602d5ab2e298c932933 |
ISSN | 1225-8024 |
IngestDate | Sun Jun 01 03:16:58 EDT 2025 Thu Mar 07 06:05:53 EST 2024 Thu Mar 13 19:38:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Color Models Corrosion Machine Learning Image Segmentation |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k957-8dc83698083dfbdf65e37674f1e4cb3e23a9e27aba6f7d602d5ab2e298c932933 |
Notes | KISTI1.1003/JNL.JAKO202305151297339 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202305151297339&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 18 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10349094 kisti_ndsl_JAKO202305151297339 nurimedia_primary_NODE11678857 |
PublicationCentury | 2000 |
PublicationDate | 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | Biuletyn Uniejowski |
PublicationTitleAlternate | Journal of the Korean institute of surface engineering |
PublicationYear | 2023 |
Publisher | 한국표면공학회 |
Publisher_xml | – name: 한국표면공학회 |
SSID | ssib036279167 ssib044738276 ssj0001528548 ssib053377541 ssib006781301 ssib051812033 ssib005300060 |
Score | 2.2023351 |
Snippet | Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely... |
SourceID | nrf kisti nurimedia |
SourceType | Open Website Open Access Repository Publisher |
StartPage | 353 |
SubjectTerms | 기계공학 |
Title | 부식 검출과 분석에 적용한 영상 처리 기술 동향 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11678857 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202305151297339&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003027779 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 한국표면공학회지, 2023, 56(6), , pp.353-370 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA9tPehFFBXrRwnonJZdk8xkPm4m2ZRaaXtold5CPktZ2UptLx6kxR4ED3pRq7TQi4LgQSoUD_5F3fR_8M1MdjetIlUvYXjz8ubNe7MzvzebeWMYt9MM4h6Rxs0CW0mTJAVuCm5lTZclqbAyUlhcHnCemaVTD8j0ors4Mvqw9tXS-lrSSp_-9lzJv3gVaOBXeUr2Lzw7EAoEKIN_4QkehuepfIxCH_lUfqwQBoj7SLQbKPSQ71QkqBOBomDkB40-O1HsBNhlQTAkrIYseRbgSkXykCdQ2EbCBQGqTvCqjmMoKBI0A1SQ6VHkBbpljnytDAdpqkE-iYSWBVxuHQsPGlBvushrK4qtKL7UwCd95d0-sxblIR4ojZnsKYwSlwJSprVtDfWiUHbwlaakUkvwYyy0kiRC6ENlF98esgRSb2FX5hFaD7AFqW-X6LPMamj_Z6dqawRMgbCw66PfrVzRHAeGJsTKuLYWYJ0FuYIVWN-PcnLFcqmQyT2m5-fDllQXCC3aGrxaTw9-Ytk-liC8ky5HSytRZzWCMOheZMusQxC4jxpnHMZs-anrzLOwNu-qPDzDeZdxgDKDeR4wDRP2EJYSwjB3hrAVIgSZN1HtZfRtoc-jyd7c-bUvEPjJaGgZ8Ft3FWDf2e66vLsCJsAallu4YJyvgjDT07-oi8ZIZ-WScbd3sFG-3DUP9zfKg53Dbz_M3sFWubVbvnttlnub5YfPR292zHJ7s3y-aZb7271PX8zD71_LF3tm79X7o7cfLxsLk-FCMNWs7hdpdoQL2CxLOaYwM3GcFUlWUDeXqY1IYeckTXDu4FjkDouTmBYso5aTuXHi5I7gKQQ9AuMrxlh3pZtfNUw3ZQ7JU5qkcU6YxeMcZzmsnhllmSBFMm5MKANE3ezJo2jauz8n7SOvV7Ll3XFYjBu3wDLKjX9wJ4gZWC56rLPRRLNz7VD-mcq5y66dSsx145xsXm8k3jDG1lbX85sArdeSCbUlNaFGy09odqAn |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EB%B6%80%EC%8B%9D+%EA%B2%80%EC%B6%9C%EA%B3%BC+%EB%B6%84%EC%84%9D%EC%97%90+%EC%A0%81%EC%9A%A9%ED%95%9C+%EC%98%81%EC%83%81+%EC%B2%98%EB%A6%AC+%EA%B8%B0%EC%88%A0+%EB%8F%99%ED%96%A5&rft.jtitle=%ED%95%9C%EA%B5%AD%ED%91%9C%EB%A9%B4%EA%B3%B5%ED%95%99%ED%9A%8C%EC%A7%80%2C+56%286%29&rft.au=%EA%B9%80%EB%B2%94%EC%88%98&rft.au=%EA%B6%8C%EC%9E%AC%EC%84%B1&rft.au=%EC%96%91%EC%A0%95%ED%98%84&rft.date=2023&rft.pub=%ED%95%9C%EA%B5%AD%ED%91%9C%EB%A9%B4%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1225-8024&rft.eissn=2288-8403&rft.spage=353&rft.epage=370&rft_id=info:doi/10.5695%2FJSSE.2023.56.6.353&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10349094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-8024&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-8024&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-8024&client=summon |