주성분 분석을 활용한 재현자료 생성
It is well known to generate synthetic data sets by the sequential regression multiple imputation (SRMI) method. The R-package synthpop are widely used for generating synthetic data by the SRMI approaches. In this paper, I suggest generating synthetic data based on the probabilistic principal compon...
Saved in:
Published in | Ŭngyong tʻonggye yŏnʼgu Vol. 36; no. 4; pp. 279 - 294 |
---|---|
Main Author | |
Format | Journal Article |
Language | Korean |
Published |
한국통계학회
2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1225-066X 2383-5818 |
DOI | 10.5351/KJAS.2023.36.4.279 |
Cover
Abstract | It is well known to generate synthetic data sets by the sequential regression multiple imputation (SRMI) method. The R-package synthpop are widely used for generating synthetic data by the SRMI approaches. In this paper, I suggest generating synthetic data based on the probabilistic principal component analysis (PPCA) method. Two simple data sets are used for a simulation study to compare the SRMI and PPCA approaches. Simulation results demonstrate that pairwise coefficients in synthetic data sets by PPCA can be closer to original ones than by SRMI. Furthermore, for the various data types that PPCA applications are well established, such as time series data, the PPCA approach can be extended to generate synthetic data sets. 재현자료를 생성할 때 순차회귀 다중대체(SRMI)를 이용하는 방식이 가장 널리 알려져 있으며, 이를 구현한 소프트웨어로 R-패키지 synthpop이 활용되고 있다. 본 논문에서는 확률적 주성분 분석(PPCA)을 이용하여 재현자료를 생성하는 방안을 제안하고 2개의 데이터 세트를 이용한 모의실험으로 SRMI 방식과 PPCA 방식을 비교하였다. 모의실험에서 PPCA 방식으로 생성한 재현자료는 쌍별 상관계수를 기준으로 원자료와의 유사성이 가장 우수함을 확인하였다. 향후 PPCA 방식을 이용하여 시계열 자료에 대한 재현자료 생성을 연구하고자 한다. |
---|---|
AbstractList | 재현자료를 생성할 때 순차회귀 다중대체(SRMI)를 이용하는 방식이 가장 널리 알려져 있으며, 이를 구현한 소프트웨어로 R-패키지 synthpop이 활용되고 있다.
본 논문에서는 확률적 주성분 분석(PPCA)을 이용하여 재현자료를 생성하는 방안을 제안하고 2개의 데이터 세트를 이용한 모의실험으로 SRMI 방식과 PPCA 방식을 비교하였다.
모의실험에서 PPCA 방식으로 생성한 재현자료는 쌍별 상관계수를 기준으로 원자료와의 유사성이 가장 우수함을 확인하였다.
향후 PPCA 방식을 이용하여 시계열 자료에 대한 재현자료 생성을 연구하고자 한다. It is well known to generate synthetic data sets by the sequential regression multiple imputation (SRMI) method.
The R-package synthpop are widely used for generating synthetic data by the SRMI approaches.
In this paper, I suggest generating synthetic data based on the probabilistic principal component analysis (PPCA) method.
Two simple data sets are used for a simulation study to compare the SRMI and PPCA approaches.
Simulation results demonstrate that pairwise coefficients in synthetic data sets by PPCA can be closer to original ones than by SRMI.
Furthermore, for the various data types that PPCA applications are well established, such as time series data, the PPCA approach can be extended to generate synthetic data sets. KCI Citation Count: 0 It is well known to generate synthetic data sets by the sequential regression multiple imputation (SRMI) method. The R-package synthpop are widely used for generating synthetic data by the SRMI approaches. In this paper, I suggest generating synthetic data based on the probabilistic principal component analysis (PPCA) method. Two simple data sets are used for a simulation study to compare the SRMI and PPCA approaches. Simulation results demonstrate that pairwise coefficients in synthetic data sets by PPCA can be closer to original ones than by SRMI. Furthermore, for the various data types that PPCA applications are well established, such as time series data, the PPCA approach can be extended to generate synthetic data sets. 재현자료를 생성할 때 순차회귀 다중대체(SRMI)를 이용하는 방식이 가장 널리 알려져 있으며, 이를 구현한 소프트웨어로 R-패키지 synthpop이 활용되고 있다. 본 논문에서는 확률적 주성분 분석(PPCA)을 이용하여 재현자료를 생성하는 방안을 제안하고 2개의 데이터 세트를 이용한 모의실험으로 SRMI 방식과 PPCA 방식을 비교하였다. 모의실험에서 PPCA 방식으로 생성한 재현자료는 쌍별 상관계수를 기준으로 원자료와의 유사성이 가장 우수함을 확인하였다. 향후 PPCA 방식을 이용하여 시계열 자료에 대한 재현자료 생성을 연구하고자 한다. |
Author | 박민정(Min-Jeong Park) |
Author_xml | – sequence: 1 fullname: 박민정(Min-Jeong Park) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002989821$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpFkDtLA0EUhQeJYIz5A1bb2Ai7zp3XzpRLjJoHBjSF3bDZh6wbN5LVwtotLWwElSRNKsHGxsp_lMl_cGMEDxzOLT7ugbONKtkoixDaBexwyuGg0_bOHYIJdahwmENctYGqhEpqcwmygqpACLexEBdbqJ7nV7iUAMKkqiIw829TfC6-Cqu0KaZmWljL14l5e18-Tywz-1i-FGb2tJg_WuZhWqI7aDP2h3lU_8sa6h81-40Tu9s7bjW8rp0q7trC5X7IIiYIiAik4oLHUg3cIA4kV4wGchC4HAci5oEQKoyA4kEccckBKI8DWkP767fZONZpkOiRn_zm5UinY-2d9VsaMFGKMVXCe2s4TfLbRGdhPtRtr9NbjUI4cwleGf657G6cXEdh4uub8vDH9_q0d9gEKNtBuvQHKPJvIQ |
ContentType | Journal Article |
DBID | DBRKI TDB JDI ACYCR |
DEWEY | 519.5 |
DOI | 10.5351/KJAS.2023.36.4.279 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals KoreaScience Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Applied Sciences Mathematics |
DocumentTitleAlternate | Synthetic data generation by probabilistic PCA |
DocumentTitle_FL | Synthetic data generation by probabilistic PCA |
EISSN | 2383-5818 |
EndPage | 294 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10299449 JAKO202325472047201 NODE11511187 |
GroupedDBID | 9ZL ALMA_UNASSIGNED_HOLDINGS DBRKI JDI OK1 TDB ACYCR |
ID | FETCH-LOGICAL-k957-675ad4e46216e189565f89b7cfc85943c8bc750c6f5c669de130bfe5851135fc3 |
ISSN | 1225-066X |
IngestDate | Wed May 22 07:06:10 EDT 2024 Fri Dec 22 11:59:37 EST 2023 Thu Feb 06 13:37:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | 확률적 주성분 분석 재현자료 probabilistic principal component analysis synthetic data |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k957-675ad4e46216e189565f89b7cfc85943c8bc750c6f5c669de130bfe5851135fc3 |
Notes | KISTI1.1003/JNL.JAKO202325472047201 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202325472047201&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 16 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10299449 kisti_ndsl_JAKO202325472047201 nurimedia_primary_NODE11511187 |
PublicationCentury | 2000 |
PublicationDate | 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | Ŭngyong tʻonggye yŏnʼgu |
PublicationTitleAlternate | The Korean journal of applied statistics |
PublicationYear | 2023 |
Publisher | 한국통계학회 |
Publisher_xml | – name: 한국통계학회 |
SSID | ssj0000612489 ssib053377530 ssib001150021 ssib044750966 ssib022238561 |
Score | 2.202572 |
Snippet | It is well known to generate synthetic data sets by the sequential regression multiple imputation (SRMI) method. The R-package synthpop are widely used for... 재현자료를 생성할 때 순차회귀 다중대체(SRMI)를 이용하는 방식이 가장 널리 알려져 있으며, 이를 구현한 소프트웨어로 R-패키지 synthpop이 활용되고 있다. 본 논문에서는 확률적 주성분 분석(PPCA)을 이용하여 재현자료를 생성하는 방안을 제안하고 2개의 데이터 세트를 이용한... |
SourceID | nrf kisti nurimedia |
SourceType | Open Website Open Access Repository Publisher |
StartPage | 279 |
SubjectTerms | 통계학 |
Title | 주성분 분석을 활용한 재현자료 생성 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11511187 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202325472047201&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002989821 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 응용통계연구, 2023, 36(4), , pp.279-294 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29b9NAFD9VZaAMfBRQy0dlCW6KHOL4bN-NtuOopEqLRJC6WbFzjqIgB6XJEAYWssHAggSo6dIJiYWFif-ozv_Ae7bjWqUSH4Ody7Pvw_dO736_s-89Qh4LFvW6loxUqUupMoFhXjQeqQA2NF3W8cURrkO2983dF6x1aByurb0rfbU0nQTV8PWl-0r-R6sgA73iLtl_0GxRKAggDfqFM2gYzn-lY-q51Nap42KCM-po1HOoY0K6UqTya6KBCTin1xpUCCrSfMKmtkglBkgqqcijtpuKeF4ASEQNi4TqeHYT1_My04rLIJe6BuSP-zOMYzShrk0dB5L9mazM8BpvxqnQ7U9X-k5bW8MmYB3N_JFslBRDYhCrLYlFPlvtL8pXK7KtxLlpBcuxiltY2N7M-Uk-xljZkGYhZvI5uZ4FQr5o7g3dQHO_17KfV7Gyqm5WWbXIWvatfWHOK75EbNl7B5gVeDKG64EDqPSVumVp-H1o-413ji0BOtfOsQ46SqyVuCLAZguoX61Y4EPsyNIQjMWTZ5u2sNVPfm8zsCOkDAMAOfEYsNHVeIoBHsBKlABP5ya5njMVxc6G3S2yNhxtkhs5a1HyOeFok1xrF55_4d8GspfM-fdtoiWnP5P597MfcwWOZL5IFnNl-fk4-fJ1-fFYSU6-LT_Nk5MPZ6fvleTtAm69QzpNr-PuqnmMDnUoDEsFutntMcnMumZKjQPZNiIuAiuMQm4Ipoc8CKGfQjMyQtMUPQmQKYgkvovWdCMK9btkPR7FcosowPKk1WPdSOsC5BT1AN-JC5MZGrckENttspP2jx_3jl76l-htmzyCjvOH4cBHn-n42x_5w7EPzPCpD0BaCCgXiik61n-VeXTx9w8aHugX5n1u3ftTPffJBkqydbgHZH0ynsqHgEwnwU46Yn4BihB0nA |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%A3%BC%EC%84%B1%EB%B6%84+%EB%B6%84%EC%84%9D%EC%9D%84+%ED%99%9C%EC%9A%A9%ED%95%9C+%EC%9E%AC%ED%98%84%EC%9E%90%EB%A3%8C+%EC%83%9D%EC%84%B1&rft.jtitle=%C5%ACngyong+t%CA%BBonggye+y%C5%8Fn%CA%BCgu&rft.au=%EB%B0%95%EB%AF%BC%EC%A0%95&rft.au=Min-Jeong+Park&rft.date=2023&rft.issn=1225-066X&rft.volume=36&rft.issue=4&rft.spage=279&rft.epage=294&rft_id=info:doi/10.5351%2FKJAS.2023.36.4.279&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202325472047201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-066X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-066X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-066X&client=summon |