합성곱 신경망을 이용한 프로펠러 캐비테이션 침식 위험도 연구
Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the r...
Saved in:
Published in | 大韓造船學會 論文集 Vol. 58; no. 3; pp. 129 - 136 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Korean |
Published |
대한조선학회
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1225-1143 2287-7355 |
DOI | 10.3744/SNAK.2021.58.3.129 |
Cover
Abstract | Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert's qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network. |
---|---|
AbstractList | Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert's qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network. Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert’s qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network. KCI Citation Count: 0 |
Author | 허재욱(Jea-Wook Hur) 이형석(Hyoungseok Lee) 김지혜(Ji-Hye Kim) |
Author_xml | – sequence: 1 fullname: 김지혜(Ji-Hye Kim) – sequence: 2 fullname: 이형석(Hyoungseok Lee) – sequence: 3 fullname: 허재욱(Jea-Wook Hur) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002724797$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpFkEtLw0AUhQepYH38AVfZuHCROHeSyUyWpdZXSwta18OYh4TWVBpduE9XirpQFGmxrlRw4XOh4B9qJv_B-ABX58L57uFwJlEh6kQ-QrOADZNZ1sJGvVQ1CCZgUG6YBhBnDBUJ4UxnJqUFVARCqA5gmRNoJo7DLQwcc5szWkSb2fm9Sp5GL0-aOhyOnj_T24EaJJoavKqr--y8r2VnSXrTz46H6fWDpj5O0_ck6x19-71LTb3fqcOBpvpJdnGZnuR_F4-jt4dpNB7IduzP_OkUai5VmuUVvdZYXi2XanrLsbjuSiug1JUBtQkD7geMAPM8TG1fMvC3pONjBgxw4LoSMCbEYRJTz3FtbnGXmlNo_jc26gai5YaiI8Mf3e6IVleU1purwmFOvoKZs3O_bCuM90IReXFbrJWqje_dgBOLO3kJDP9ctN8Nd3wvlGI3P2T3QNQbixXI24HNuPkFfs6H7Q |
ContentType | Journal Article |
DBID | DBRKI TDB JDI ACYCR |
DEWEY | 623.8 |
DOI | 10.3744/SNAK.2021.58.3.129 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals KoreaScience Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Military & Naval Science |
DocumentTitleAlternate | A Study on the Risk of Propeller Cavitation Erosion Using Convolutional Neural Network |
DocumentTitle_FL | A Study on the Risk of Propeller Cavitation Erosion Using Convolutional Neural Network |
EISSN | 2287-7355 |
EndPage | 136 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9797353 JAKO202118248962701 NODE10561678 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB JDI ACYCR M~E |
ID | FETCH-LOGICAL-k948-ca4f55caf562718ef7217dd056ea71eba9e071710fcca1002297a05d9c6848c53 |
ISSN | 1225-1143 |
IngestDate | Tue Nov 21 21:19:27 EST 2023 Fri Dec 22 11:58:43 EST 2023 Thu Feb 06 13:33:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Keywords | Deep learning(딥러닝) Erosion(침식) Propeller(프로펠러) Convolutional Neural Network(CNN 합성곱 신경망 Cavitation(캐비테이션) |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k948-ca4f55caf562718ef7217dd056ea71eba9e071710fcca1002297a05d9c6848c53 |
Notes | KISTI1.1003/JNL.JAKO202118248962701 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202118248962701&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9797353 kisti_ndsl_JAKO202118248962701 nurimedia_primary_NODE10561678 |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | 大韓造船學會 論文集 |
PublicationTitleAlternate | Journal of the society of naval architects of korea |
PublicationYear | 2021 |
Publisher | 대한조선학회 |
Publisher_xml | – name: 대한조선학회 |
SSID | ssib018086875 ssib044734094 ssib000717722 ssib001148908 ssib036278526 ssib022235208 ssib053377058 |
Score | 1.7442697 |
Snippet | Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been... |
SourceID | nrf kisti nurimedia |
SourceType | Open Website Open Access Repository Publisher |
StartPage | 129 |
SubjectTerms | 조선공학 |
Title | 합성곱 신경망을 이용한 프로펠러 캐비테이션 침식 위험도 연구 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10561678 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202118248962701&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002724797 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 대한조선학회 논문집, 2021, 58(3), 237, pp.129-136 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT9RAtEE86MX4GfCDNMbxQrq222k7c-wXQQjLBRJuTb_WkDWLrnDAg6flhFEPEohhI56UhIP4ccDEP8R2_4PvTWu3Iokfl9np68yb99HOvDfb90aS7tA0MaOUNRUtVUOFmlBEccIUEyNok5ClnGOA81zDnF6kM0vG0siZx5WvltZWo1r89NS4kv_RKsBArxgl-w-aLZECAOqgXyhBw1D-lY6J7xFuEJsT3yWMEkcjvk0cHSqTAuQQWxWgOnE84sOlRbiHt6BkdLKoOVRUbIFJoOTupKhRRIv9NAAhhPkCpUP4FLFdgcCxCRcgh4vW0MggzP0FN0A4y1tzYrOCOO7lFLhFPw7UMcTEpkrqLOLkLACfbtWUJj5AKHLkc6SG61hhqqCPEcZwKGwDNABSUwyjA1IgHOjTBMgkLO8PY5Z7lGI4gQoIAPxY8ZAy7g6blMzld4xCBdwbNhEMMcEsB7G5hZCd8ikvjrKeWVam19Pq_ksezl0sFjAXKuBP5hN0KmB18EAVS89TD_9cYQxWeZP0ynKhFbs9ueWh5algTi5qukUp_q3esGdrSEDNYDW9VnatZhA_sbKX31vO2LPz2BWcScrwuCWMeDxbtywNv4Kde-ZXLU7wtyqh1OAu82H6J42BC8yGFieYPxYzhhY8pZZe3TEAZ8KyVHFKbimtPHQNubr3O0_gI6LjtAymXrsDFuK59hoecwFzZcXsW7goXSj8NdnOX75L0khr5bI0Nidy23fW5btyI4Q3Wi6WyCvS4mBrP-seHn8-lLPNveNP3_vve1mvK2e9L9mb_cHWrjx43e2_2x282Ou_PZCzb6_6R93BxnO8v7EjZ0cfss2enO12B9s7_ZfQb_vj8deDq9LClL_gTivF0SVKi1OmxCFtGkYcNsG7AOMvbVrg-ScJOBtpaGlpFPIUBa2pTZhAMQlynVuhaiQ8NhllsaFfk0bbK-10TJLNkIPNnpgwn6og3DhiTKcsxX0JrtXTaFyaEAIL2smTh8Epih6XboMkg1a8HGAqefx9sBK0OgE4zPcDbnF4WnXAUgo6eJTnuQka856v4Q4DGLTX_zTMDek8QvLdyZvS6GpnLb0F9vpqNCGesB8OrL3G |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%ED%95%A9%EC%84%B1%EA%B3%B1+%EC%8B%A0%EA%B2%BD%EB%A7%9D%EC%9D%84+%EC%9D%B4%EC%9A%A9%ED%95%9C+%ED%94%84%EB%A1%9C%ED%8E%A0%EB%9F%AC+%EC%BA%90%EB%B9%84%ED%85%8C%EC%9D%B4%EC%85%98+%EC%B9%A8%EC%8B%9D+%EC%9C%84%ED%97%98%EB%8F%84+%EC%97%B0%EA%B5%AC&rft.jtitle=%E5%A4%A7%E9%9F%93%E9%80%A0%E8%88%B9%E5%AD%B8%E6%9C%83+%EF%A5%81%E6%96%87%E9%9B%86&rft.au=%EA%B9%80%EC%A7%80%ED%98%9C&rft.au=%EC%9D%B4%ED%98%95%EC%84%9D&rft.au=%ED%97%88%EC%9E%AC%EC%9A%B1&rft.au=Kim%2C+Ji-Hye&rft.date=2021&rft.issn=1225-1143&rft.eissn=2287-7355&rft.volume=58&rft.issue=3&rft.spage=129&rft.epage=136&rft_id=info:doi/10.3744%2FSNAK.2021.58.3.129&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202118248962701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-1143&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-1143&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-1143&client=summon |