합성곱 신경망을 이용한 프로펠러 캐비테이션 침식 위험도 연구

Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the r...

Full description

Saved in:
Bibliographic Details
Published in大韓造船學會 論文集 Vol. 58; no. 3; pp. 129 - 136
Main Authors 김지혜(Ji-Hye Kim), 이형석(Hyoungseok Lee), 허재욱(Jea-Wook Hur)
Format Journal Article
LanguageKorean
Published 대한조선학회 2021
Subjects
Online AccessGet full text
ISSN1225-1143
2287-7355
DOI10.3744/SNAK.2021.58.3.129

Cover

Abstract Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert's qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network.
AbstractList Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert's qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network.
Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been qualitatively evaluated by each institution with their own criteria based on the experiences. In this study, in order to quantitatively evaluate the risk of cavitation erosion on the propeller, we implement a deep learning algorithm based on a convolutional neural network. We train and verify it using the model tests results, including cavitation characteristics of various ship types. Here, we adopt the validated well-known networks such as VGG, GoogLeNet, and ResNet, and the results are compared with the expert’s qualitative prediction results to confirm the feasibility of the prediction algorithm using a convolutional neural network. KCI Citation Count: 0
Author 허재욱(Jea-Wook Hur)
이형석(Hyoungseok Lee)
김지혜(Ji-Hye Kim)
Author_xml – sequence: 1
  fullname: 김지혜(Ji-Hye Kim)
– sequence: 2
  fullname: 이형석(Hyoungseok Lee)
– sequence: 3
  fullname: 허재욱(Jea-Wook Hur)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002724797$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkEtLw0AUhQepYH38AVfZuHCROHeSyUyWpdZXSwta18OYh4TWVBpduE9XirpQFGmxrlRw4XOh4B9qJv_B-ABX58L57uFwJlEh6kQ-QrOADZNZ1sJGvVQ1CCZgUG6YBhBnDBUJ4UxnJqUFVARCqA5gmRNoJo7DLQwcc5szWkSb2fm9Sp5GL0-aOhyOnj_T24EaJJoavKqr--y8r2VnSXrTz46H6fWDpj5O0_ck6x19-71LTb3fqcOBpvpJdnGZnuR_F4-jt4dpNB7IduzP_OkUai5VmuUVvdZYXi2XanrLsbjuSiug1JUBtQkD7geMAPM8TG1fMvC3pONjBgxw4LoSMCbEYRJTz3FtbnGXmlNo_jc26gai5YaiI8Mf3e6IVleU1purwmFOvoKZs3O_bCuM90IReXFbrJWqje_dgBOLO3kJDP9ctN8Nd3wvlGI3P2T3QNQbixXI24HNuPkFfs6H7Q
ContentType Journal Article
DBID DBRKI
TDB
JDI
ACYCR
DEWEY 623.8
DOI 10.3744/SNAK.2021.58.3.129
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
DocumentTitleAlternate A Study on the Risk of Propeller Cavitation Erosion Using Convolutional Neural Network
DocumentTitle_FL A Study on the Risk of Propeller Cavitation Erosion Using Convolutional Neural Network
EISSN 2287-7355
EndPage 136
ExternalDocumentID oai_kci_go_kr_ARTI_9797353
JAKO202118248962701
NODE10561678
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
JDI
ACYCR
M~E
ID FETCH-LOGICAL-k948-ca4f55caf562718ef7217dd056ea71eba9e071710fcca1002297a05d9c6848c53
ISSN 1225-1143
IngestDate Tue Nov 21 21:19:27 EST 2023
Fri Dec 22 11:58:43 EST 2023
Thu Feb 06 13:33:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Keywords Deep learning(딥러닝)
Erosion(침식)
Propeller(프로펠러)
Convolutional Neural Network(CNN
합성곱 신경망
Cavitation(캐비테이션)
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k948-ca4f55caf562718ef7217dd056ea71eba9e071710fcca1002297a05d9c6848c53
Notes KISTI1.1003/JNL.JAKO202118248962701
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202118248962701&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9797353
kisti_ndsl_JAKO202118248962701
nurimedia_primary_NODE10561678
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle 大韓造船學會 論文集
PublicationTitleAlternate Journal of the society of naval architects of korea
PublicationYear 2021
Publisher 대한조선학회
Publisher_xml – name: 대한조선학회
SSID ssib018086875
ssib044734094
ssib000717722
ssib001148908
ssib036278526
ssib022235208
ssib053377058
Score 1.7442697
Snippet Cavitation erosion is one of the major factors causing damage by lowering the structural strength of the marine propeller and the risk of it has been...
SourceID nrf
kisti
nurimedia
SourceType Open Website
Open Access Repository
Publisher
StartPage 129
SubjectTerms 조선공학
Title 합성곱 신경망을 이용한 프로펠러 캐비테이션 침식 위험도 연구
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10561678
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202118248962701&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002724797
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 대한조선학회 논문집, 2021, 58(3), 237, pp.129-136
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT9RAtEE86MX4GfCDNMbxQrq222k7c-wXQQjLBRJuTb_WkDWLrnDAg6flhFEPEohhI56UhIP4ccDEP8R2_4PvTWu3Iokfl9np68yb99HOvDfb90aS7tA0MaOUNRUtVUOFmlBEccIUEyNok5ClnGOA81zDnF6kM0vG0siZx5WvltZWo1r89NS4kv_RKsBArxgl-w-aLZECAOqgXyhBw1D-lY6J7xFuEJsT3yWMEkcjvk0cHSqTAuQQWxWgOnE84sOlRbiHt6BkdLKoOVRUbIFJoOTupKhRRIv9NAAhhPkCpUP4FLFdgcCxCRcgh4vW0MggzP0FN0A4y1tzYrOCOO7lFLhFPw7UMcTEpkrqLOLkLACfbtWUJj5AKHLkc6SG61hhqqCPEcZwKGwDNABSUwyjA1IgHOjTBMgkLO8PY5Z7lGI4gQoIAPxY8ZAy7g6blMzld4xCBdwbNhEMMcEsB7G5hZCd8ikvjrKeWVam19Pq_ksezl0sFjAXKuBP5hN0KmB18EAVS89TD_9cYQxWeZP0ynKhFbs9ueWh5algTi5qukUp_q3esGdrSEDNYDW9VnatZhA_sbKX31vO2LPz2BWcScrwuCWMeDxbtywNv4Kde-ZXLU7wtyqh1OAu82H6J42BC8yGFieYPxYzhhY8pZZe3TEAZ8KyVHFKbimtPHQNubr3O0_gI6LjtAymXrsDFuK59hoecwFzZcXsW7goXSj8NdnOX75L0khr5bI0Nidy23fW5btyI4Q3Wi6WyCvS4mBrP-seHn8-lLPNveNP3_vve1mvK2e9L9mb_cHWrjx43e2_2x282Ou_PZCzb6_6R93BxnO8v7EjZ0cfss2enO12B9s7_ZfQb_vj8deDq9LClL_gTivF0SVKi1OmxCFtGkYcNsG7AOMvbVrg-ScJOBtpaGlpFPIUBa2pTZhAMQlynVuhaiQ8NhllsaFfk0bbK-10TJLNkIPNnpgwn6og3DhiTKcsxX0JrtXTaFyaEAIL2smTh8Epih6XboMkg1a8HGAqefx9sBK0OgE4zPcDbnF4WnXAUgo6eJTnuQka856v4Q4DGLTX_zTMDek8QvLdyZvS6GpnLb0F9vpqNCGesB8OrL3G
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%ED%95%A9%EC%84%B1%EA%B3%B1+%EC%8B%A0%EA%B2%BD%EB%A7%9D%EC%9D%84+%EC%9D%B4%EC%9A%A9%ED%95%9C+%ED%94%84%EB%A1%9C%ED%8E%A0%EB%9F%AC+%EC%BA%90%EB%B9%84%ED%85%8C%EC%9D%B4%EC%85%98+%EC%B9%A8%EC%8B%9D+%EC%9C%84%ED%97%98%EB%8F%84+%EC%97%B0%EA%B5%AC&rft.jtitle=%E5%A4%A7%E9%9F%93%E9%80%A0%E8%88%B9%E5%AD%B8%E6%9C%83+%EF%A5%81%E6%96%87%E9%9B%86&rft.au=%EA%B9%80%EC%A7%80%ED%98%9C&rft.au=%EC%9D%B4%ED%98%95%EC%84%9D&rft.au=%ED%97%88%EC%9E%AC%EC%9A%B1&rft.au=Kim%2C+Ji-Hye&rft.date=2021&rft.issn=1225-1143&rft.eissn=2287-7355&rft.volume=58&rft.issue=3&rft.spage=129&rft.epage=136&rft_id=info:doi/10.3744%2FSNAK.2021.58.3.129&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202118248962701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-1143&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-1143&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-1143&client=summon