하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화
We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to gen...
Saved in:
Published in | 멀티미디어학회논문지 Vol. 23; no. 8; pp. 965 - 976 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Korean |
Published |
한국멀티미디어학회
2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing. |
---|---|
AbstractList | We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels’ internal dependencies and the cells’ shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask.
Finally, the classifier’s outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing. KCI Citation Count: 0 We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing. |
Author | 칼렙부누누(Caleb Vununu) 윤성대(Sung-Dae Youn) 임선자(Seon-Ja Lim) 권기룡(Ki-Ryong Kwon) |
Author_xml | – sequence: 1 fullname: 임선자(Seon-Ja Lim) – sequence: 2 fullname: 칼렙부누누(Caleb Vununu) – sequence: 3 fullname: 권기룡(Ki-Ryong Kwon) – sequence: 4 fullname: 윤성대(Sung-Dae Youn) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002615999$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpNjDFLw0AAhYMoWGv_QxYHh8Dd5ZK7G0utWi0WJPuR5C4SUlNJdHA2TgodbCGCwUmnDlVEOviLvOQ_mFoHecN7PL73trT1eBTLNa2BTIoNAAFa1xoQIWYQQuCm1krT0AMYE8sEyG5oTjXNy-JDLe7V60w9POnV5Kt8z_XypiizN13Nx7qavOjqeabuCv17MVfzvG6n1e1yUE4zvcwW1XhWFvkyqc-sepxsaxuBO0xl68-bmrPfdTqHRn9w0Ou0-0bEMDGELSmWnvCpGzAiTCRs3wIeZDaBnuszDCn0QeBTIaQPfRp4AguLSRoQKAkxzaa2u7qNk4BHfshHbvjrZyMeJbx96vQ4syxsWaRmd1ZsFKaXIY9FOuRH7eMBArUwtRAwbWT_4-KrJDyXInT5RR3c5JqfDPa6gFFgU0TMH8sEgbk |
ContentType | Journal Article |
DBID | DBRKI TDB JDI ACYCR |
DEWEY | 006.7 |
DatabaseName | DBPIA - 디비피아 DBpia 人文社会系パッケージ KoreaScience Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning |
DocumentTitle_FL | Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning |
EISSN | 2384-0102 |
EndPage | 976 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9554557 JAKO202024852036267 NODE09806827 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB JDI ACYCR M~E |
ID | FETCH-LOGICAL-k947-d6e84ebdc8af97d32d6c50b19671bac94181c0fc8ddec1c8fbd4d59e8f71e7733 |
ISSN | 1229-7771 |
IngestDate | Fri Nov 17 19:26:55 EST 2023 Fri Dec 22 12:01:20 EST 2023 Fri Oct 18 15:43:11 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Bacterial Cell Segmentation Hybrid Feature Bio-cell Informatics Artificial Neural Network Autoencoder Deep Learning |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k947-d6e84ebdc8af97d32d6c50b19671bac94181c0fc8ddec1c8fbd4d59e8f71e7733 |
Notes | KISTI1.1003/JNL.JAKO202024852036267 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202024852036267&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9554557 kisti_ndsl_JAKO202024852036267 nurimedia_primary_NODE09806827 |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationTitle | 멀티미디어학회논문지 |
PublicationTitleAlternate | Journal of Korea Multimedia Society |
PublicationYear | 2020 |
Publisher | 한국멀티미디어학회 |
Publisher_xml | – name: 한국멀티미디어학회 |
SSID | ssib044753026 ssib001149062 ssib053377227 ssib006781189 ssib036278602 ssib012146251 |
Score | 2.115183 |
Snippet | We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature... |
SourceID | nrf kisti nurimedia |
SourceType | Open Website Open Access Repository Publisher |
StartPage | 965 |
SubjectTerms | 전자/정보통신공학 |
Title | 하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09806827 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202024852036267&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002615999 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 멀티미디어학회논문지, 2020, 23(8), , pp.965-976 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtNA0Cq9wAWBAPGsLMSeIleO48fu0bETlVa0EgTUm5Vd26gKclBphODAhXACqQdaKUhEnODUQ0EI9cAX1ck_MLNrpw5C4qVEyWQ9OzOesXdnnN0ZTbtlWSbjXCSG43opBCixY3DBXUPEvJ5QmC9Vyvw76-7KfXt109lcOHVcWbU02OHL4vkv95X8i1WhDeyKu2T_wrIzotAAMNgXPsHC8PlHNiatkDCHMEpaAWEhadqk1SRNSmiAgO8SXwKsQVhQk9g2aQaI3bSgWw0h2sCuCMCxek1SMAltSwjwfUdB7YIYBTiEJh8ZAabCl8QU5CAj6swLEWA7tWslIyqR2uWxcCaNOgaUXIRRZEZUgeLSh5ZUGS7RQBLNQga_XXQEkeGNRF2pEKUiJgG_EAqkayrpAtkrIL5H6OyfG9m7JflLiXyzaGEmOOT3kn5mrHZxb1jlOYpUKivJmpKjOgspHqWSXAlYNICZmdceDDJ4zZHxZadgTsF-g_gw5dC1LePuM6wOtfYUXfY55gxOwp7ZUbIKkDkIDAO6EXaTGg7tZa_iSY9lzu7KUlWKtUP88D81XZnwLItBhKXK4Cwnsg28OFyZZM7NkmpXeDEa0MqUx1Stj8J7Yt5Pic2lq7S-EbZMRk0X7n5MNAEzCa6yfdE68dwhUjcrmStd3AF9UggB3CwPq6WVvzFNZcM8iRwgaIEwURZonp0RhJsYg22B15htg7N5OhtgxQwYdiseZOecdrYI_XRf3cfntYVe_4LWme6PJuOv-dGb_NNB_va9Pt37Pvky0icvx5PhZz0_3NXzvY96_uEgfz3Wj48O88MRtO5PX2GHyf5QnwyPprsHk_EIofzbcPpu76LWabc6wYpRVDoxesz2jNhNqJ3wWNBuyry4YcWucEwOk6NX513BbHDDhZkKCr6IqAua8tiOHZbQ1KsnntdoXNIWs36WXNZ0O7Xc1K6LOBUQ6LAupWlsxSnnjm27oute0ZakUqIsfvIoWvXXNvBKw7yGlsxM5V3RboK2op7YijDzPH4_7Ee97Qji69sRg-jDcQBpaabM6LFKixNVjXz1dwjXtDPIWD3MvK4t7mwPkhvg3u_wJXlh_ADCwskB |
link.rule.ids | 230,315,783,787,888,4031 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%ED%95%98%EC%9D%B4%EB%B8%8C%EB%A6%AC%EB%93%9C+%ED%94%BC%EC%B2%98+%EC%83%9D%EC%84%B1+%EB%B0%8F+%EB%94%A5+%EB%9F%AC%EB%8B%9D+%EA%B8%B0%EB%B0%98+%EB%B0%95%ED%85%8C%EB%A6%AC%EC%95%84+%EC%84%B8%ED%8F%AC%EC%9D%98+%EC%84%B8%EB%B6%84%ED%99%94&rft.jtitle=%EB%A9%80%ED%8B%B0%EB%AF%B8%EB%94%94%EC%96%B4%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80&rft.au=%EC%9E%84%EC%84%A0%EC%9E%90%28Seon-Ja+Lim%29&rft.au=%EC%B9%BC%EB%A0%99%EB%B6%80%EB%88%84%EB%88%84%28Caleb+Vununu%29&rft.au=%EA%B6%8C%EA%B8%B0%EB%A3%A1%28Ki-Ryong+Kwon%29&rft.au=%EC%9C%A4%EC%84%B1%EB%8C%80%28Sung-Dae+Youn%29&rft.date=2020&rft.pub=%ED%95%9C%EA%B5%AD%EB%A9%80%ED%8B%B0%EB%AF%B8%EB%94%94%EC%96%B4%ED%95%99%ED%9A%8C&rft.issn=1229-7771&rft.eissn=2384-0102&rft.volume=23&rft.issue=8&rft.spage=965&rft.epage=976&rft.externalDocID=NODE09806827 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-7771&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-7771&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-7771&client=summon |