하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화

We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to gen...

Full description

Saved in:
Bibliographic Details
Published in멀티미디어학회논문지 Vol. 23; no. 8; pp. 965 - 976
Main Authors 임선자(Seon-Ja Lim), 칼렙부누누(Caleb Vununu), 권기룡(Ki-Ryong Kwon), 윤성대(Sung-Dae Youn)
Format Journal Article
LanguageKorean
Published 한국멀티미디어학회 2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing.
AbstractList We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels’ internal dependencies and the cells’ shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier’s outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing. KCI Citation Count: 0
We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing.
Author 칼렙부누누(Caleb Vununu)
윤성대(Sung-Dae Youn)
임선자(Seon-Ja Lim)
권기룡(Ki-Ryong Kwon)
Author_xml – sequence: 1
  fullname: 임선자(Seon-Ja Lim)
– sequence: 2
  fullname: 칼렙부누누(Caleb Vununu)
– sequence: 3
  fullname: 권기룡(Ki-Ryong Kwon)
– sequence: 4
  fullname: 윤성대(Sung-Dae Youn)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002615999$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpNjDFLw0AAhYMoWGv_QxYHh8Dd5ZK7G0utWi0WJPuR5C4SUlNJdHA2TgodbCGCwUmnDlVEOviLvOQ_mFoHecN7PL73trT1eBTLNa2BTIoNAAFa1xoQIWYQQuCm1krT0AMYE8sEyG5oTjXNy-JDLe7V60w9POnV5Kt8z_XypiizN13Nx7qavOjqeabuCv17MVfzvG6n1e1yUE4zvcwW1XhWFvkyqc-sepxsaxuBO0xl68-bmrPfdTqHRn9w0Ou0-0bEMDGELSmWnvCpGzAiTCRs3wIeZDaBnuszDCn0QeBTIaQPfRp4AguLSRoQKAkxzaa2u7qNk4BHfshHbvjrZyMeJbx96vQ4syxsWaRmd1ZsFKaXIY9FOuRH7eMBArUwtRAwbWT_4-KrJDyXInT5RR3c5JqfDPa6gFFgU0TMH8sEgbk
ContentType Journal Article
DBID DBRKI
TDB
JDI
ACYCR
DEWEY 006.7
DatabaseName DBPIA - 디비피아
DBpia 人文社会系パッケージ
KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning
DocumentTitle_FL Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning
EISSN 2384-0102
EndPage 976
ExternalDocumentID oai_kci_go_kr_ARTI_9554557
JAKO202024852036267
NODE09806827
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
JDI
ACYCR
M~E
ID FETCH-LOGICAL-k947-d6e84ebdc8af97d32d6c50b19671bac94181c0fc8ddec1c8fbd4d59e8f71e7733
ISSN 1229-7771
IngestDate Fri Nov 17 19:26:55 EST 2023
Fri Dec 22 12:01:20 EST 2023
Fri Oct 18 15:43:11 EDT 2024
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Bacterial Cell Segmentation
Hybrid Feature
Bio-cell Informatics
Artificial Neural Network
Autoencoder
Deep Learning
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k947-d6e84ebdc8af97d32d6c50b19671bac94181c0fc8ddec1c8fbd4d59e8f71e7733
Notes KISTI1.1003/JNL.JAKO202024852036267
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202024852036267&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9554557
kisti_ndsl_JAKO202024852036267
nurimedia_primary_NODE09806827
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle 멀티미디어학회논문지
PublicationTitleAlternate Journal of Korea Multimedia Society
PublicationYear 2020
Publisher 한국멀티미디어학회
Publisher_xml – name: 한국멀티미디어학회
SSID ssib044753026
ssib001149062
ssib053377227
ssib006781189
ssib036278602
ssib012146251
Score 2.115183
Snippet We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature...
SourceID nrf
kisti
nurimedia
SourceType Open Website
Open Access Repository
Publisher
StartPage 965
SubjectTerms 전자/정보통신공학
Title 하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09806827
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202024852036267&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002615999
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 멀티미디어학회논문지, 2020, 23(8), , pp.965-976
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtNA0Cq9wAWBAPGsLMSeIleO48fu0bETlVa0EgTUm5Vd26gKclBphODAhXACqQdaKUhEnODUQ0EI9cAX1ck_MLNrpw5C4qVEyWQ9OzOesXdnnN0ZTbtlWSbjXCSG43opBCixY3DBXUPEvJ5QmC9Vyvw76-7KfXt109lcOHVcWbU02OHL4vkv95X8i1WhDeyKu2T_wrIzotAAMNgXPsHC8PlHNiatkDCHMEpaAWEhadqk1SRNSmiAgO8SXwKsQVhQk9g2aQaI3bSgWw0h2sCuCMCxek1SMAltSwjwfUdB7YIYBTiEJh8ZAabCl8QU5CAj6swLEWA7tWslIyqR2uWxcCaNOgaUXIRRZEZUgeLSh5ZUGS7RQBLNQga_XXQEkeGNRF2pEKUiJgG_EAqkayrpAtkrIL5H6OyfG9m7JflLiXyzaGEmOOT3kn5mrHZxb1jlOYpUKivJmpKjOgspHqWSXAlYNICZmdceDDJ4zZHxZadgTsF-g_gw5dC1LePuM6wOtfYUXfY55gxOwp7ZUbIKkDkIDAO6EXaTGg7tZa_iSY9lzu7KUlWKtUP88D81XZnwLItBhKXK4Cwnsg28OFyZZM7NkmpXeDEa0MqUx1Stj8J7Yt5Pic2lq7S-EbZMRk0X7n5MNAEzCa6yfdE68dwhUjcrmStd3AF9UggB3CwPq6WVvzFNZcM8iRwgaIEwURZonp0RhJsYg22B15htg7N5OhtgxQwYdiseZOecdrYI_XRf3cfntYVe_4LWme6PJuOv-dGb_NNB_va9Pt37Pvky0icvx5PhZz0_3NXzvY96_uEgfz3Wj48O88MRtO5PX2GHyf5QnwyPprsHk_EIofzbcPpu76LWabc6wYpRVDoxesz2jNhNqJ3wWNBuyry4YcWucEwOk6NX513BbHDDhZkKCr6IqAua8tiOHZbQ1KsnntdoXNIWs36WXNZ0O7Xc1K6LOBUQ6LAupWlsxSnnjm27oute0ZakUqIsfvIoWvXXNvBKw7yGlsxM5V3RboK2op7YijDzPH4_7Ee97Qji69sRg-jDcQBpaabM6LFKixNVjXz1dwjXtDPIWD3MvK4t7mwPkhvg3u_wJXlh_ADCwskB
link.rule.ids 230,315,783,787,888,4031
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%ED%95%98%EC%9D%B4%EB%B8%8C%EB%A6%AC%EB%93%9C+%ED%94%BC%EC%B2%98+%EC%83%9D%EC%84%B1+%EB%B0%8F+%EB%94%A5+%EB%9F%AC%EB%8B%9D+%EA%B8%B0%EB%B0%98+%EB%B0%95%ED%85%8C%EB%A6%AC%EC%95%84+%EC%84%B8%ED%8F%AC%EC%9D%98+%EC%84%B8%EB%B6%84%ED%99%94&rft.jtitle=%EB%A9%80%ED%8B%B0%EB%AF%B8%EB%94%94%EC%96%B4%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80&rft.au=%EC%9E%84%EC%84%A0%EC%9E%90%28Seon-Ja+Lim%29&rft.au=%EC%B9%BC%EB%A0%99%EB%B6%80%EB%88%84%EB%88%84%28Caleb+Vununu%29&rft.au=%EA%B6%8C%EA%B8%B0%EB%A3%A1%28Ki-Ryong+Kwon%29&rft.au=%EC%9C%A4%EC%84%B1%EB%8C%80%28Sung-Dae+Youn%29&rft.date=2020&rft.pub=%ED%95%9C%EA%B5%AD%EB%A9%80%ED%8B%B0%EB%AF%B8%EB%94%94%EC%96%B4%ED%95%99%ED%9A%8C&rft.issn=1229-7771&rft.eissn=2384-0102&rft.volume=23&rft.issue=8&rft.spage=965&rft.epage=976&rft.externalDocID=NODE09806827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-7771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-7771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-7771&client=summon