충전데이터를 이용한 이상감지 제어시스템

In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an ana...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 26; no. 2; pp. 313 - 316
Main Author Moon, Sang-Ho
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2022
Subjects
Online AccessGet full text
ISSN2234-4772
2288-4165
DOI10.6109/jkiice.2022.26.2.313

Cover

Abstract In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data.
AbstractList In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data. KCI Citation Count: 0
In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data.
Author Sang-Ho Moon(문상호)
Author_xml – sequence: 1
  fullname: Moon, Sang-Ho
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002812907$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkDFLw0AcxQ9RsNZ-A4cuDg6Jd_dPcrmx1KrVYkG6H9dLImdqKo0Obop1UQQXHSRCB0W6dShOfiJ7_Q6mreD0fg9-vOGtoeWkm4QIbRBsewTz7dNYaxXaFFNqU8-mNhBYQgVKfd9yiOcuzxgcy2GMrqJSmuo2Bo8yTsArIG6-hmbQnzyOzNt42h9NPr7LOZnX4fQ5m9Ptzc_oyXxel80gMy9j85CZ-_fpXbaOViLZScPSXxZRa7fWqu5bjeZevVppWDF3wPIhIq70mJIyUIyzvEpf4jYNMY4UcYnCTkSciAdOpJikLAg4loHLFFDuMYAi2lrMJr1IxEqLrtTzPOmKuCcqx6264ByAUZa7mws31umFFkmQdsRB5bA5-wZzH8DnLrj430sue_osDLQU5znI3pU4au7UCMHAKQb4BbkJd58
ContentType Journal Article
DBID DBRKI
TDB
JDI
ACYCR
DEWEY 003.5
DOI 10.6109/jkiice.2022.26.2.313
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate Abnormality Detection Control System using Charging Data
DocumentTitle_FL Abnormality Detection Control System using Charging Data
EISSN 2288-4165
EndPage 316
ExternalDocumentID oai_kci_go_kr_ARTI_9933727
JAKO202209833895350
NODE11039203
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
JDI
ACYCR
ID FETCH-LOGICAL-k943-83f15a67caadc7973f1a8a0b2e00fc151c04f14f9d4fc7a27dd90ad57c3296733
ISSN 2234-4772
IngestDate Sun Mar 09 07:50:59 EDT 2025
Fri Dec 22 11:58:35 EST 2023
Thu Feb 06 13:26:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Electronic vehicle charging
Classification model
Charger
Clustering
Anomaly detection
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k943-83f15a67caadc7973f1a8a0b2e00fc151c04f14f9d4fc7a27dd90ad57c3296733
Notes KISTI1.1003/JNL.JAKO202209833895350
http://jkiice.org
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202209833895350&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 4
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9933727
kisti_ndsl_JAKO202209833895350
nurimedia_primary_NODE11039203
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle 한국정보통신학회논문지
PublicationTitleAlternate Journal of the Korea Institute of Information and Communication Engineering
PublicationYear 2022
Publisher 한국정보통신학회
Publisher_xml – name: 한국정보통신학회
SSID ssib036279136
ssib053377456
ssib044738262
ssib015937029
ssib023393675
ssib012146319
Score 2.164965
Snippet In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric...
SourceID nrf
kisti
nurimedia
SourceType Open Website
Open Access Repository
Publisher
StartPage 313
SubjectTerms 전자/정보통신공학
Title 충전데이터를 이용한 이상감지 제어시스템
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11039203
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202209833895350&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002812907
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국정보통신학회논문지, 2022, 26(2), , pp.313-316
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLe2cYALAgFi_JkqhCWkKSWxndg-Jm3RGNp2KdJuUeIkqBS1qLQXDgjEuICQuMABFWkHENqth4kTn4il34HnJE2zakgDcYncZ_vZz891fs-x30PoNglYwMA8NoQKQoOpUBpSRcqIZWDTUJmKZNEbtradjYdsc9feXVq-Uzm1NBqGdfX8xHsl_6JVoIFe9S3Zv9BsyRQIkAb9whM0DM9T6Ri3GthzsCt1wjWxYLjlYdHEnqkpEhJAaWq6pnjYtbHXWK_kQcLN6jextLFcyBMUgCZuubq2zFi6HAtzvWhONrLSzqy0V1AEsMzb1Syr8LdsJ2NqY7c5Y2Xr7nl01mFH5-Y8IbeolXfTxaKRiallyYSCQRBl5_Sc0QElBalschwrVkgFrARQqtseZG4e_6-ezhdaQEjMYDwPIVSPCxrMNQCrdmVxp_mt2QIn0PyO6OIryMk9uD7udrRPKN3zOnHqpF5Wrnr8XngTH_P53VUd_1Hf7w58sGzu-4AjKWDNZXSGcG7pw6tbL1qzldPS4dnp3DEfYFTKK99bCaWSVrz2AGrh0qIlEGWMU1FxHAk2AJgFWejjcnDye6davLsnCQfGnbZ4OoDRegOAdmd7Ix2fAha5Cl5rX0DnC0Or5ub_motoqdu_hGT64yDd3zt6P0m_HE73JkffftYglX4-mH4cZ6nXr35NPqTfX9bS_XH66TB9N07ffp2-GV9G7XutdmPDKIKHGF3JqCFoYtmBw1UQRIpLDj8DEZghiU0zUQBzlckSiyUyYoniAeFRJM0gsrmiRDqc0itopdfvxVdRLSFxHNCYWGEcM6KoTEQi44QpEcVhEkWraC2T3O9Fz574m-6DHT0wphQUjAGb2uYqugVDkin0z4oFLuWI-U9zTzP-9k6zZenDGsSk107D5To6pxvP9whvoJXhYBTfBNQ8DNeyCfMbTTiX6g
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%B6%A9%EC%A0%84%EB%8D%B0%EC%9D%B4%ED%84%B0%EB%A5%BC+%EC%9D%B4%EC%9A%A9%ED%95%9C+%EC%9D%B4%EC%83%81%EA%B0%90%EC%A7%80+%EC%A0%9C%EC%96%B4%EC%8B%9C%EC%8A%A4%ED%85%9C&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80%2C+26%282%29&rft.au=%EB%AC%B8%EC%83%81%ED%98%B8&rft.date=2022&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C&rft.issn=2234-4772&rft.eissn=2288-4165&rft.spage=313&rft.epage=316&rft_id=info:doi/10.6109%2Fjkiice.2022.26.2.313&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9933727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon