충전데이터를 이용한 이상감지 제어시스템
In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an ana...
Saved in:
Published in | 한국정보통신학회논문지 Vol. 26; no. 2; pp. 313 - 316 |
---|---|
Main Author | |
Format | Journal Article |
Language | Korean |
Published |
한국정보통신학회
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2234-4772 2288-4165 |
DOI | 10.6109/jkiice.2022.26.2.313 |
Cover
Abstract | In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data. |
---|---|
AbstractList | In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data. KCI Citation Count: 0 In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data. |
Author | Sang-Ho Moon(문상호) |
Author_xml | – sequence: 1 fullname: Moon, Sang-Ho |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002812907$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpFkDFLw0AcxQ9RsNZ-A4cuDg6Jd_dPcrmx1KrVYkG6H9dLImdqKo0Obop1UQQXHSRCB0W6dShOfiJ7_Q6mreD0fg9-vOGtoeWkm4QIbRBsewTz7dNYaxXaFFNqU8-mNhBYQgVKfd9yiOcuzxgcy2GMrqJSmuo2Bo8yTsArIG6-hmbQnzyOzNt42h9NPr7LOZnX4fQ5m9Ptzc_oyXxel80gMy9j85CZ-_fpXbaOViLZScPSXxZRa7fWqu5bjeZevVppWDF3wPIhIq70mJIyUIyzvEpf4jYNMY4UcYnCTkSciAdOpJikLAg4loHLFFDuMYAi2lrMJr1IxEqLrtTzPOmKuCcqx6264ByAUZa7mws31umFFkmQdsRB5bA5-wZzH8DnLrj430sue_osDLQU5znI3pU4au7UCMHAKQb4BbkJd58 |
ContentType | Journal Article |
DBID | DBRKI TDB JDI ACYCR |
DEWEY | 003.5 |
DOI | 10.6109/jkiice.2022.26.2.313 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals KoreaScience Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
DocumentTitleAlternate | Abnormality Detection Control System using Charging Data |
DocumentTitle_FL | Abnormality Detection Control System using Charging Data |
EISSN | 2288-4165 |
EndPage | 316 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9933727 JAKO202209833895350 NODE11039203 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB JDI ACYCR |
ID | FETCH-LOGICAL-k943-83f15a67caadc7973f1a8a0b2e00fc151c04f14f9d4fc7a27dd90ad57c3296733 |
ISSN | 2234-4772 |
IngestDate | Sun Mar 09 07:50:59 EDT 2025 Fri Dec 22 11:58:35 EST 2023 Thu Feb 06 13:26:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Electronic vehicle charging Classification model Charger Clustering Anomaly detection |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k943-83f15a67caadc7973f1a8a0b2e00fc151c04f14f9d4fc7a27dd90ad57c3296733 |
Notes | KISTI1.1003/JNL.JAKO202209833895350 http://jkiice.org |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202209833895350&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 4 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9933727 kisti_ndsl_JAKO202209833895350 nurimedia_primary_NODE11039203 |
PublicationCentury | 2000 |
PublicationDate | 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationTitle | 한국정보통신학회논문지 |
PublicationTitleAlternate | Journal of the Korea Institute of Information and Communication Engineering |
PublicationYear | 2022 |
Publisher | 한국정보통신학회 |
Publisher_xml | – name: 한국정보통신학회 |
SSID | ssib036279136 ssib053377456 ssib044738262 ssib015937029 ssib023393675 ssib012146319 |
Score | 2.164965 |
Snippet | In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric... |
SourceID | nrf kisti nurimedia |
SourceType | Open Website Open Access Repository Publisher |
StartPage | 313 |
SubjectTerms | 전자/정보통신공학 |
Title | 충전데이터를 이용한 이상감지 제어시스템 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11039203 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202209833895350&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002812907 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 한국정보통신학회논문지, 2022, 26(2), , pp.313-316 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLe2cYALAgFi_JkqhCWkKSWxndg-Jm3RGNp2KdJuUeIkqBS1qLQXDgjEuICQuMABFWkHENqth4kTn4il34HnJE2zakgDcYncZ_vZz891fs-x30PoNglYwMA8NoQKQoOpUBpSRcqIZWDTUJmKZNEbtradjYdsc9feXVq-Uzm1NBqGdfX8xHsl_6JVoIFe9S3Zv9BsyRQIkAb9whM0DM9T6Ri3GthzsCt1wjWxYLjlYdHEnqkpEhJAaWq6pnjYtbHXWK_kQcLN6jextLFcyBMUgCZuubq2zFi6HAtzvWhONrLSzqy0V1AEsMzb1Syr8LdsJ2NqY7c5Y2Xr7nl01mFH5-Y8IbeolXfTxaKRiallyYSCQRBl5_Sc0QElBalschwrVkgFrARQqtseZG4e_6-ezhdaQEjMYDwPIVSPCxrMNQCrdmVxp_mt2QIn0PyO6OIryMk9uD7udrRPKN3zOnHqpF5Wrnr8XngTH_P53VUd_1Hf7w58sGzu-4AjKWDNZXSGcG7pw6tbL1qzldPS4dnp3DEfYFTKK99bCaWSVrz2AGrh0qIlEGWMU1FxHAk2AJgFWejjcnDye6davLsnCQfGnbZ4OoDRegOAdmd7Ix2fAha5Cl5rX0DnC0Or5ub_motoqdu_hGT64yDd3zt6P0m_HE73JkffftYglX4-mH4cZ6nXr35NPqTfX9bS_XH66TB9N07ffp2-GV9G7XutdmPDKIKHGF3JqCFoYtmBw1UQRIpLDj8DEZghiU0zUQBzlckSiyUyYoniAeFRJM0gsrmiRDqc0itopdfvxVdRLSFxHNCYWGEcM6KoTEQi44QpEcVhEkWraC2T3O9Fz574m-6DHT0wphQUjAGb2uYqugVDkin0z4oFLuWI-U9zTzP-9k6zZenDGsSk107D5To6pxvP9whvoJXhYBTfBNQ8DNeyCfMbTTiX6g |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%B6%A9%EC%A0%84%EB%8D%B0%EC%9D%B4%ED%84%B0%EB%A5%BC+%EC%9D%B4%EC%9A%A9%ED%95%9C+%EC%9D%B4%EC%83%81%EA%B0%90%EC%A7%80+%EC%A0%9C%EC%96%B4%EC%8B%9C%EC%8A%A4%ED%85%9C&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80%2C+26%282%29&rft.au=%EB%AC%B8%EC%83%81%ED%98%B8&rft.date=2022&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C&rft.issn=2234-4772&rft.eissn=2288-4165&rft.spage=313&rft.epage=316&rft_id=info:doi/10.6109%2Fjkiice.2022.26.2.313&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9933727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon |