인공지능을 이용한 학습부진 특성 추출 및 예측 모델 연구

The diagnostic evaluation conducted at the national level is very important to detect underachievers in school early. This study used an artificial intelligence method to find the characteristics of underachievers that affect learning development for middle school students. In this study an artifici...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 26; no. 4; pp. 510 - 518
Main Authors 양자영(Ja-Young Yang), 문경희(Kyong-Hi Moon), 박성호(Seong-Ho Park)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2022
Subjects
Online AccessGet full text
ISSN2234-4772
2288-4165
DOI10.6109/jkiice.2022.26.4.510

Cover

Abstract The diagnostic evaluation conducted at the national level is very important to detect underachievers in school early. This study used an artificial intelligence method to find the characteristics of underachievers that affect learning development for middle school students. In this study an artificial intelligence model was constructed and analyzed to determine whether the Busan Education Longitudinal Data in 2020 by entering data from the first year of middle school in 2019. A predictive model was developed to predict basic middle school Korean, English, and mathematics education with machine learning algorithms, and it was confirmed that the accuracy was 78%, 82%, and 83%, respectively, in the prediction for the next school year. In addition, by drawing an achievement prediction decision tree for each middle school subject we are analyzing the process of prediction. Finally, we examined what characteristics affect achievement prediction. 국가수준에서 시행되는 진단평가는 학교에서 학습부진이 있는 학생을 조기 발견하는 것이 매우 중요하다. 본연구는 부산교육종단의 2019년 중학교 1학년의 데이터를 입력하여 2020년 성취여부를 판별하는 인공지능 모델을 구축하고 분석하였다. 머신러닝 알고리즘으로 중학교 국어, 영어, 수학 기초학력을 예측하는 예측모형을 개발하고, 다음 학년 예측에도 78%, 82%, 83% 의 정확도를 보이는 것을 확인하였다. 또한, 중학교 과목별 성취예측 의사결정트리를 그려서 과정을 분석해보면서, 성취 예측에 영향을 미치는 특성들은 어떠한 것들이 있는지 살펴보았다.
AbstractList The diagnostic evaluation conducted at the national level is very important to detect underachievers in school early. This study used an artificial intelligence method to find the characteristics of underachievers that affect learning development for middle school students. In this study an artificial intelligence model was constructed and analyzed to determine whether the Busan Education Longitudinal Data in 2020 by entering data from the first year of middle school in 2019. A predictive model was developed to predict basic middle school Korean, English, and mathematics education with machine learning algorithms, and it was confirmed that the accuracy was 78%, 82%, and 83%, respectively, in the prediction for the next school year. In addition, by drawing an achievement prediction decision tree for each middle school subject we are analyzing the process of prediction. Finally, we examined what characteristics affect achievement prediction. 국가수준에서 시행되는 진단평가는 학교에서 학습부진이 있는 학생을 조기 발견하는 것이 매우 중요하다. 본연구는 부산교육종단의 2019년 중학교 1학년의 데이터를 입력하여 2020년 성취여부를 판별하는 인공지능 모델을 구축하고 분석하였다. 머신러닝 알고리즘으로 중학교 국어, 영어, 수학 기초학력을 예측하는 예측모형을 개발하고, 다음 학년 예측에도 78%, 82%, 83% 의 정확도를 보이는 것을 확인하였다. 또한, 중학교 과목별 성취예측 의사결정트리를 그려서 과정을 분석해보면서, 성취 예측에 영향을 미치는 특성들은 어떠한 것들이 있는지 살펴보았다.
국가수준에서 시행되는 진단평가는 학교에서 학습부진이 있는 학생을 조기 발견하는 것이 매우 중요하다. 본 연구는 부산교육종단의 2019년 중학교 1학년의 데이터를 입력하여 2020년 성취여부를 판별하는 인공지능 모델을 구축하고 분석하였다. 머신러닝 알고리즘으로 중학교 국어, 영어, 수학 기초학력을 예측하는 예측모형을 개발하고, 다음 학년 예측에도 78%, 82%, 83% 의 정확도를 보이는 것을 확인하였다. 또한, 중학교 과목별 성취예측 의사결정트리를 그려서 과정을 분석해보면서, 성취 예측에 영향을 미치는 특성들은 어떠한 것들이 있는지 살펴보았다. The diagnostic evaluation conducted at the national level is very important to detect underachievers in school early. This study used an artificial intelligence method to find the characteristics of underachievers that affect learning development for middle school students. In this study an artificial intelligence model was constructed and analyzed to determine whether the Busan Education Longitudinal Data in 2020 by entering data from the first year of middle school in 2019. A predictive model was developed to predict basic middle school Korean, English, and mathematics education with machine learning algorithms, and it was confirmed that the accuracy was 78%, 82%, and 83%, respectively, in the prediction for the next school year. In addition, by drawing an achievement prediction decision tree for each middle school subject we are analyzing the process of prediction. Finally, we examined what characteristics affect achievement prediction. KCI Citation Count: 0
Author 박성호(Seong-Ho Park)
양자영(Ja-Young Yang)
문경희(Kyong-Hi Moon)
Author_xml – sequence: 1
  fullname: 양자영(Ja-Young Yang)
– sequence: 2
  fullname: 문경희(Kyong-Hi Moon)
– sequence: 3
  fullname: 박성호(Seong-Ho Park)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002839012$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkDlLA0EAhQdR8PwHFttYWOw6MztnGTzjFZD0w2Z3VsbVjWS1sLNIIQGxMXhgCgvxwELRhPiX3Ml_MDGC1feKj8fjTYLRtJpqAGYR9BiCcmEvMSbUHoYYe5h5xKMIjoAJjIVwCWJ0dJB94hLO8TiYyTJTgT7DXCKfTYAt2-p-f7Tt42neeLCtumNbn_b2ude8c3rNG9to551T-1h3eo0vW393bOfSdu6c_O3Csddntnvv5C9P-XnXsVdv3-3XaTAWB_uZnvnjFCivLJcX19zN0mpxsbDpJpJgN9RShxUJI0JiFAsWCipjgaOgwvq7tCRIaK4FDn2KKJOE-wRSGspIEOGHnPtTYH5Ym9ZilYRGVQPzy92qSmqqsFMuKim5DwXpu3NDNzHZkVFplO2r9cJGafAXwoRhRgUn-N9Lj2vmQEcmUIf9ENRO1HZpaRkhSDnuH_kDkTuCsw
ContentType Journal Article
DBID DBRKI
TDB
JDI
ACYCR
DEWEY 003.5
DOI 10.6109/jkiice.2022.26.4.510
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate Extracting characteristics of underachievers learning using artificial intelligence and researching a prediction model
DocumentTitle_FL Extracting characteristics of underachievers learning using artificial intelligence and researching a prediction model
EISSN 2288-4165
EndPage 518
ExternalDocumentID oai_kci_go_kr_ARTI_9973084
JAKO202212462658742
NODE11057222
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
JDI
ACYCR
ID FETCH-LOGICAL-k942-ce9ecb90d44f1f86c859f82dab6627e9418e7e82c3515694734055c9d8483c773
ISSN 2234-4772
IngestDate Sun Mar 09 07:53:19 EDT 2025
Fri Dec 22 12:02:20 EST 2023
Thu Feb 06 13:36:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 익스트림 그레디언트 부스팅
XGBoost
Basic education
Predictive models
예측모델
인공지능
기초학력
artificial intelligence
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k942-ce9ecb90d44f1f86c859f82dab6627e9418e7e82c3515694734055c9d8483c773
Notes KISTI1.1003/JNL.JAKO202212462658742
http://jkiice.org
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202212462658742&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9973084
kisti_ndsl_JAKO202212462658742
nurimedia_primary_NODE11057222
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle 한국정보통신학회논문지
PublicationTitleAlternate Journal of the Korea Institute of Information and Communication Engineering
PublicationYear 2022
Publisher 한국정보통신학회
Publisher_xml – name: 한국정보통신학회
SSID ssib036279136
ssib053377456
ssib044738262
ssib015937029
ssib023393675
ssib012146319
Score 2.167698
Snippet The diagnostic evaluation conducted at the national level is very important to detect underachievers in school early. This study used an artificial...
국가수준에서 시행되는 진단평가는 학교에서 학습부진이 있는 학생을 조기 발견하는 것이 매우 중요하다. 본 연구는 부산교육종단의 2019년 중학교 1학년의 데이터를 입력하여 2020년 성취여부를 판별하는 인공지능 모델을 구축하고 분석하였다. 머신러닝 알고리즘으로 중학교 국어, 영어,...
SourceID nrf
kisti
nurimedia
SourceType Open Website
Open Access Repository
Publisher
StartPage 510
SubjectTerms 전자/정보통신공학
Title 인공지능을 이용한 학습부진 특성 추출 및 예측 모델 연구
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11057222
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202212462658742&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002839012
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국정보통신학회논문지, 2022, 26(4), , pp.510-518
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9RANNR60IsoKtaPEsQ5LVk3ySSZOSablNrSVrBCPYVNMinblV2p7UEP0kMPUhAvFj9oDx6kKh4q2lKP_p1u-h98b5LsplDwAy_Zybx5n5OZeS87eaMotxj6yIlBNWa3Eo3CGqhFCRcaNVPeEg6ERREGijOz9uR9OrVgLYyc-lnZtbS6EtXjpyd-V_IvvQp10K_4lexf9OyAKFRAGfoXrtDDcP2jPiZBk3CfeIwELvFM4llY4zq4fSHwCHOJaxVtGK2VraksAIyTwCfcIrxZK0scYYCHlDzi2ZJSTpLKRgjLG1Hi6ZImtOK0LCApQGwQNpEzZIQxCWTE1SXQBdZMyoei560cRAkk3yIZ5FKpYiFiCfWlPA2sREam1AfksgvtmYfQoTo-qsqakp9FPFlwpTilqcpnTgoCKuiyEBDeKBWA2Z5NtTQ5M9YeyDfsfIg1oAcCGsTzJU8fKw02_aTXXdQm2zB3oo99DMvLlShMKbEY0jHYPSGxerW7cic7r76aMYYh_P-yzXAxAC-OatTJjzmqi6IOxgM41FZ1NcvzDxSjllaWJqvYPiyKO3bSAmrn-WeXOm3MaIU61Q27TusD5GOpyWfn_EDHg6LByTylnDZgaOOu2plnQTml63huvDnMGAjOs-lU_gg2TJOblXRC4E45XDcHHjKljskqGS0hOIF4RZ7JPLBI_kEsSn77JLkh6sRQrA3OY3cZfM4z3VU8OANm34ojOX9eOVdEgKqbD-cLykind1GZybYPDr_tZTtr_Y0P2fa6mm1_z959OtrcUo8232Ybe_39tWxnXT3a-JGtf1Wz_VfZ_pba332pZm-eZwfv1f7nj_0XB2r2evdw78slZX4imG9OasVJJ1qHU0OLBRdxxBsJpameMjtmFk-ZkbQiPJ5BcKoz4QhmxCZEHzYHm0CYZcU8YZSZseOYl5XRbq8rriiq7qTCBsSU24xCqBFZaRqJ1JY0ecMaU8alNcJu8vhhOOVOz6GxwMm3DYhFHGqMKTfBTGEnboeYeR5_F3thZzmE-PpOyDl4BIwClYEVw0d5Wpyw-jRc_V2Da8pZZJy_zLyujK4sr4ob4N6vROPyAfoFbHrFJg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5%EC%9D%84+%EC%9D%B4%EC%9A%A9%ED%95%9C+%ED%95%99%EC%8A%B5%EB%B6%80%EC%A7%84+%ED%8A%B9%EC%84%B1+%EC%B6%94%EC%B6%9C+%EB%B0%8F+%EC%98%88%EC%B8%A1+%EB%AA%A8%EB%8D%B8+%EC%97%B0%EA%B5%AC&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80&rft.au=%EC%96%91%EC%9E%90%EC%98%81%28Ja-Young+Yang%29&rft.au=%EB%AC%B8%EA%B2%BD%ED%9D%AC%28Kyong-Hi+Moon%29&rft.au=%EB%B0%95%EC%84%B1%ED%98%B8%28Seong-Ho+Park%29&rft.date=2022&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C&rft.issn=2234-4772&rft.eissn=2288-4165&rft.volume=26&rft.issue=4&rft.spage=510&rft.epage=518&rft_id=info:doi/10.6109%2Fjkiice.2022.26.4.510&rft.externalDocID=NODE11057222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon