효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조

With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 24; no. 11; pp. 1437 - 1444
Main Authors 박세진(Sejin Park), 한정훈(Jeong Hoon Han), 문영식(Young Shik Moon)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method. 컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다.
AbstractList With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method. 컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다.
컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다. With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method. KCI Citation Count: 0
Author 박세진(Sejin Park)
문영식(Young Shik Moon)
한정훈(Jeong Hoon Han)
Author_xml – sequence: 1
  fullname: 박세진(Sejin Park)
– sequence: 2
  fullname: 한정훈(Jeong Hoon Han)
– sequence: 3
  fullname: 문영식(Young Shik Moon)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002648611$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpFkLtKA0EYhQdR8PoKMo2Fxa5zn90yeL9gQNMP4-6sjGs2ko2FpZDOwioYJIFYaaEQBCEWvlB28g5uVLD6Dv_5OMW_CGazRmYAWMXIFxiFGxeptZHxCSLIJ8zH2MeMyhmwQEgQeAwLPjvNlHlMSjIPVvLcniEqiAwxFQvATh5fXO_FDW5dfwSLz7YbdCbdDizu28VTz3Vv3cMbLCt313f9NnS99qTTg6emrrOWjWBuzusma-mWbWRwPBoWwy50d69u9FFiMH7_Kp77cPzx6p6Gy2Au0Ze5WfnjEqjtbNc297yj6u7-ZuXIS0OGvYCaIIolTUqyOEY6MkLghAiDOEtiwoSenjFmkutAGEY1irjmZzGWyDBBl8D672zWTFQaWdXQ9ofnDZU2VeWktq9CgWQQ0tJd-3VTm7esyuL8Uh1UDqvTbyIuOJUhYpz_e9l109ZNbLW6KoNu3qjj6tY2RixkIcL0GzNekI0
ContentType Journal Article
DBID DBRKI
TDB
JDI
ACYCR
DEWEY 003.5
DOI 10.6109/jkiice.2020.24.11.1437
DatabaseName DBpia
Korean Database (DBpia)
KoreaScience
Korean Citation Index (Open Access)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate Efficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection
DocumentTitle_FL Efficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection
EISSN 2288-4165
EndPage 1444
ExternalDocumentID oai_kci_go_kr_ARTI_9607893
JAKO202005653790455
NODE10494901
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
JDI
ACYCR
M~E
ID FETCH-LOGICAL-k941-83e8cd73f3e84dd0ace661f26e054fd246a4dd011475a86e43a0c5a5bd170e463
ISSN 2234-4772
IngestDate Tue Nov 21 21:13:35 EST 2023
Fri Dec 22 11:59:09 EST 2023
Fri Oct 18 15:27:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep learning
Road detection
자율 주행
Computer vision
도로영역 인식
Semantic segmentation
딥러닝
의미적 분할
Autonomous driving
컴퓨터 비전
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k941-83e8cd73f3e84dd0ace661f26e054fd246a4dd011475a86e43a0c5a5bd170e463
Notes KISTI1.1003/JNL.JAKO202005653790455
http://jkiice.org
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653790455&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9607893
kisti_ndsl_JAKO202005653790455
nurimedia_primary_NODE10494901
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle 한국정보통신학회논문지
PublicationTitleAlternate Journal of the Korea Institute of Information and Communication Engineering
PublicationYear 2020
Publisher 한국정보통신학회
Publisher_xml – name: 한국정보통신학회
SSID ssib036279136
ssib053377456
ssib044738262
ssib015937029
ssib023393675
ssib012146319
Score 2.1150603
Snippet With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous...
컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인...
SourceID nrf
kisti
nurimedia
SourceType Open Website
Open Access Repository
Publisher
StartPage 1437
SubjectTerms 전자/정보통신공학
Title 효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10494901
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653790455&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002648611
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국정보통신학회논문지, 2020, 24(11), , pp.1437-1444
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEI7acoALAgGiPKoI4dMqSx527BzzqkpR20uReouyeVTbpVvUx4UDUqW99cCpokK7UnuihyJVSJXKgZ_AH-mm_4Gxk80aVKSCuCTWOB6PZ2L7m8QeK8pzhnObGK1cSwmmGo71RIttlmsYoLWjp5mji1WVC4v23Gs8v0JWJiZ_SKuWdrZbzeTdlftK_sWqQAO78l2yf2HZmikQIA32hStYGK7XsjEKA-S4yGUo9JHjVwlXB3goKAHyWAOFHvIcxHCV5xBRjEFC5LFZkech1-A8eDk2YkCRGzRqVjzBPJ4uKQw3qoo5g4BzdnwYfdbBWu2ksZWtrlc7m-ANC13OwdOFOCAFa1TsXFEnzyM1SRePm8gLhGAUais5kOpxkNXTZWBd1z96LJCaCzVayBMyMpvnjqspSzmVJpkvNEKQJxKuX7UaJOBrJP2GiXlgK0P6fjJqT8kUSwXw-JFatlISIoSEVvkyl7q2Wv9C2fJ3GVOv-9D_avB4JgAIhzVMyzOOmllFg84AaJpIsw9gXyohGfCV8VWzpF0GmV3rtHnYKi5708QwdzbH5eWw5L_BhV8Ck3eSdrS6EXU2I3C_XkbgDlMAwJPKDRPGfb7CduF9OBreDX6GvDWOHghA2qLST2HTshxLCi0E0Io6hlWjZYypBc4w_y9YK6Tc888b9OLq5oDPyR2xNkDH7iYgzpvdHX5sBoy9EoxcvqPcrvw_1S07811lorNxT2lffjou-sfF4W4xOFeH33rF4f7lwb46_NAbHvWLg93i4xcVsoq9QTHoqUW_d7nfV0cdTZU7mnpxfjo8PVCLvZPi_Axuhxdfvw8_D9SLs5Pi6PS-sjwbLvtzWnUGitZxsKExK2NJSq0c7jhN9TjJAFDnpp2Bq5WnJrZjTjYMTEnM7AxbMNqSmLRSg-oZqPuBMtXd6GYPFZVkJI1ZHMPVwnneitPMwEBJzEQnsRNPKzNCU1E33XoTzbuvlrgqwT8iFnXA8SPTyjNQoTD5n00PXGoNR2_LgDnR4lIQGjwQFTgfj67D5bFyi1defup8okxtb-5kTwH8b7dmxCv1E05J1VI
link.rule.ids 230,315,783,787,888,4031,27935,27936,27937
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%ED%9A%A8%EC%9C%A8%EC%A0%81%EC%9D%B8+%EB%B9%84%EC%A0%95%ED%98%95+%EB%8F%84%EB%A1%9C%EC%98%81%EC%97%AD+%EC%9D%B8%EC%8B%9D%EC%9D%84+%EC%9C%84%ED%95%9C+Semantic+segmentation+%EA%B8%B0%EB%B0%98+%EC%8B%AC%EC%B8%B5+%EC%8B%A0%EA%B2%BD%EB%A7%9D+%EA%B5%AC%EC%A1%B0&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80%2C+24%2811%29&rft.au=%EB%B0%95%EC%84%B8%EC%A7%84&rft.au=%ED%95%9C%EB%B3%B5%EA%B7%9C&rft.au=%EB%AC%B8%EC%98%81%EC%8B%9D&rft.date=2020&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C&rft.issn=2234-4772&rft.eissn=2288-4165&rft.spage=1437&rft.epage=1444&rft_id=info:doi/10.6109%2Fjkiice.2020.24.11.1437&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9607893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon