효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조
With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road...
Saved in:
Published in | 한국정보통신학회논문지 Vol. 24; no. 11; pp. 1437 - 1444 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Korean |
Published |
한국정보통신학회
2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method. 컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다. |
---|---|
AbstractList | With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method. 컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다. 컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다. With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous driving. In the field of autonomous driving, in particular, the object detection technique using deep learning are widely used, and the paved road detection is a particularly crucial problem. Unlike the ROI detection algorithm used in general object detection, the structure of paved road in the image is heterogeneous, so the ROI-based object recognition architecture is not available. In this paper, we propose a deep neural network architecture for atypical paved road detection using Semantic segmentation network. In addition, we introduce the multi-scale semantic segmentation network, which is a network architecture specialized to the paved road detection. We demonstrate that the performance is significantly improved by the proposed method. KCI Citation Count: 0 |
Author | 박세진(Sejin Park) 문영식(Young Shik Moon) 한정훈(Jeong Hoon Han) |
Author_xml | – sequence: 1 fullname: 박세진(Sejin Park) – sequence: 2 fullname: 한정훈(Jeong Hoon Han) – sequence: 3 fullname: 문영식(Young Shik Moon) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002648611$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpFkLtKA0EYhQdR8PoKMo2Fxa5zn90yeL9gQNMP4-6sjGs2ko2FpZDOwioYJIFYaaEQBCEWvlB28g5uVLD6Dv_5OMW_CGazRmYAWMXIFxiFGxeptZHxCSLIJ8zH2MeMyhmwQEgQeAwLPjvNlHlMSjIPVvLcniEqiAwxFQvATh5fXO_FDW5dfwSLz7YbdCbdDizu28VTz3Vv3cMbLCt313f9NnS99qTTg6emrrOWjWBuzusma-mWbWRwPBoWwy50d69u9FFiMH7_Kp77cPzx6p6Gy2Au0Ze5WfnjEqjtbNc297yj6u7-ZuXIS0OGvYCaIIolTUqyOEY6MkLghAiDOEtiwoSenjFmkutAGEY1irjmZzGWyDBBl8D672zWTFQaWdXQ9ofnDZU2VeWktq9CgWQQ0tJd-3VTm7esyuL8Uh1UDqvTbyIuOJUhYpz_e9l109ZNbLW6KoNu3qjj6tY2RixkIcL0GzNekI0 |
ContentType | Journal Article |
DBID | DBRKI TDB JDI ACYCR |
DEWEY | 003.5 |
DOI | 10.6109/jkiice.2020.24.11.1437 |
DatabaseName | DBpia Korean Database (DBpia) KoreaScience Korean Citation Index (Open Access) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
DocumentTitleAlternate | Efficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection |
DocumentTitle_FL | Efficient Deep Neural Network Architecture based on Semantic Segmentation for Paved Road Detection |
EISSN | 2288-4165 |
EndPage | 1444 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9607893 JAKO202005653790455 NODE10494901 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB JDI ACYCR M~E |
ID | FETCH-LOGICAL-k941-83e8cd73f3e84dd0ace661f26e054fd246a4dd011475a86e43a0c5a5bd170e463 |
ISSN | 2234-4772 |
IngestDate | Tue Nov 21 21:13:35 EST 2023 Fri Dec 22 11:59:09 EST 2023 Fri Oct 18 15:27:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Deep learning Road detection 자율 주행 Computer vision 도로영역 인식 Semantic segmentation 딥러닝 의미적 분할 Autonomous driving 컴퓨터 비전 |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k941-83e8cd73f3e84dd0ace661f26e054fd246a4dd011475a86e43a0c5a5bd170e463 |
Notes | KISTI1.1003/JNL.JAKO202005653790455 http://jkiice.org |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653790455&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9607893 kisti_ndsl_JAKO202005653790455 nurimedia_primary_NODE10494901 |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationTitle | 한국정보통신학회논문지 |
PublicationTitleAlternate | Journal of the Korea Institute of Information and Communication Engineering |
PublicationYear | 2020 |
Publisher | 한국정보통신학회 |
Publisher_xml | – name: 한국정보통신학회 |
SSID | ssib036279136 ssib053377456 ssib044738262 ssib015937029 ssib023393675 ssib012146319 |
Score | 2.1150603 |
Snippet | With the development of computer vision systems, many advances have been made in the fields of surveillance, biometrics, medical imaging, and autonomous... 컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인... |
SourceID | nrf kisti nurimedia |
SourceType | Open Website Open Access Repository Publisher |
StartPage | 1437 |
SubjectTerms | 전자/정보통신공학 |
Title | 효율적인 비정형 도로영역 인식을 위한 Semantic segmentation 기반 심층 신경망 구조 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10494901 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202005653790455&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002648611 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 한국정보통신학회논문지, 2020, 24(11), , pp.1437-1444 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEI7acoALAgGiPKoI4dMqSx527BzzqkpR20uReouyeVTbpVvUx4UDUqW99cCpokK7UnuihyJVSJXKgZ_AH-mm_4Gxk80aVKSCuCTWOB6PZ2L7m8QeK8pzhnObGK1cSwmmGo71RIttlmsYoLWjp5mji1WVC4v23Gs8v0JWJiZ_SKuWdrZbzeTdlftK_sWqQAO78l2yf2HZmikQIA32hStYGK7XsjEKA-S4yGUo9JHjVwlXB3goKAHyWAOFHvIcxHCV5xBRjEFC5LFZkech1-A8eDk2YkCRGzRqVjzBPJ4uKQw3qoo5g4BzdnwYfdbBWu2ksZWtrlc7m-ANC13OwdOFOCAFa1TsXFEnzyM1SRePm8gLhGAUais5kOpxkNXTZWBd1z96LJCaCzVayBMyMpvnjqspSzmVJpkvNEKQJxKuX7UaJOBrJP2GiXlgK0P6fjJqT8kUSwXw-JFatlISIoSEVvkyl7q2Wv9C2fJ3GVOv-9D_avB4JgAIhzVMyzOOmllFg84AaJpIsw9gXyohGfCV8VWzpF0GmV3rtHnYKi5708QwdzbH5eWw5L_BhV8Ck3eSdrS6EXU2I3C_XkbgDlMAwJPKDRPGfb7CduF9OBreDX6GvDWOHghA2qLST2HTshxLCi0E0Io6hlWjZYypBc4w_y9YK6Tc888b9OLq5oDPyR2xNkDH7iYgzpvdHX5sBoy9EoxcvqPcrvw_1S07811lorNxT2lffjou-sfF4W4xOFeH33rF4f7lwb46_NAbHvWLg93i4xcVsoq9QTHoqUW_d7nfV0cdTZU7mnpxfjo8PVCLvZPi_Axuhxdfvw8_D9SLs5Pi6PS-sjwbLvtzWnUGitZxsKExK2NJSq0c7jhN9TjJAFDnpp2Bq5WnJrZjTjYMTEnM7AxbMNqSmLRSg-oZqPuBMtXd6GYPFZVkJI1ZHMPVwnneitPMwEBJzEQnsRNPKzNCU1E33XoTzbuvlrgqwT8iFnXA8SPTyjNQoTD5n00PXGoNR2_LgDnR4lIQGjwQFTgfj67D5bFyi1defup8okxtb-5kTwH8b7dmxCv1E05J1VI |
link.rule.ids | 230,315,783,787,888,4031,27935,27936,27937 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%ED%9A%A8%EC%9C%A8%EC%A0%81%EC%9D%B8+%EB%B9%84%EC%A0%95%ED%98%95+%EB%8F%84%EB%A1%9C%EC%98%81%EC%97%AD+%EC%9D%B8%EC%8B%9D%EC%9D%84+%EC%9C%84%ED%95%9C+Semantic+segmentation+%EA%B8%B0%EB%B0%98+%EC%8B%AC%EC%B8%B5+%EC%8B%A0%EA%B2%BD%EB%A7%9D+%EA%B5%AC%EC%A1%B0&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80%2C+24%2811%29&rft.au=%EB%B0%95%EC%84%B8%EC%A7%84&rft.au=%ED%95%9C%EB%B3%B5%EA%B7%9C&rft.au=%EB%AC%B8%EC%98%81%EC%8B%9D&rft.date=2020&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C&rft.issn=2234-4772&rft.eissn=2288-4165&rft.spage=1437&rft.epage=1444&rft_id=info:doi/10.6109%2Fjkiice.2020.24.11.1437&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9607893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon |