텍스트 마이닝 기법을 이용한 유튜브 추천 알고리즘의 필터버블 현상 분석
This study empirically confirmed 'the political bias of the YouTube recommendation algorithm' and 'the selective exposure of user' to verify the Filter Bubble phenomenon of YouTube. For the experiment, two new YouTube accounts were opened and each account was trained simultaneous...
Saved in:
Published in | 한국콘텐츠학회 논문지, 21(5) Vol. 21; no. 5; pp. 1 - 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Korean |
Published |
한국콘텐츠학회
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1598-4877 2508-6723 |
DOI | 10.5392/JKCA.2021.21.05.001 |
Cover
Summary: | This study empirically confirmed 'the political bias of the YouTube recommendation algorithm' and 'the selective exposure of user' to verify the Filter Bubble phenomenon of YouTube. For the experiment, two new YouTube accounts were opened and each account was trained simultaneously in a conservative and a liberal account for a week, and the "Recommended" videos were collected from each account every two days. Subsequently, through the text mining method, the goal of the research was to investigate whether conservative videos are more recommended in a righties account or lefties videos are more recommended in a lefties account. And then, this study examined if users who consumed political news videos via YouTube showed "selective exposure" received selected information according to their political orientation through a survey. As a result of the Text Mining, conservative videos are more recommended in the righties account, and liberal videos are more recommended in the lefties account. Additionally, most of the videos recommended in the righties/lefties account dealt with politically biased topics, and the topics covered in each account showed markedly definitive differences. And about 77% of the respondents showed selective exposure. 이 연구에서는 필터버블 현상의 주요 요인인 추천 알고리즘의 정치적 편향성(추천 알고리즘이 이용자가 선호하는 정치 성향의 영상을 제한적으로 제공하는 것)과, 이용자들의 선택적 노출(이용자가 자신이 선호하는 정치 성향의 영상을 자발적으로 선택하는 것)을 실증적으로 검증하고자 하였다. 이를 위해 새로운 유튜브 계정 2개를 개설하여 각각의 계정을 보수/진보 계정으로 일주일 동안 훈련시켰고, 각 계정에서 추천받은 영상들은 이틀 간격으로 수집하였다. 텍스트 마이닝(Text Mining) 방법을 통해 보수 계정에서는 보수 성향의 영상이 더욱 추천되는지, 진보 계정에서는 진보 성향의 영상이 더욱 추천되는지를 알아보았다. 또한 각각의 계정에서 정치적으로 편향된 주제들이 다뤄지고 있는지를 관찰하였다. 설문조사를 통해 유튜브로 정치 및 뉴스 영상을 소비하는 이용자들에게 보수/진보 계정에서 6일째에 추천된 영상 리스트를 제공하여 이용자들이 선택적 노출을 보이는지를 알아보았다. 연구결과, 시간이 지날수록 보수 계정에서는 보수 성향의 영상과 채널이 더욱 추천되고, 진보 계정에서는 진보 성향의 영상과 채널이 더욱 추천되었으며, 보수 계정과 진보 계정에서 추천된 영상들은 대부분 정치적으로 편향된 주제를 다루고 있는 것으로 나타났다. 응답자들의 약 77%는 자신이 선호하는 정치 성향의 영상에 선택적으로 노출되어 보이는 것으로 나타났다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202116153193274 |
ISSN: | 1598-4877 2508-6723 |
DOI: | 10.5392/JKCA.2021.21.05.001 |