사용자 맞춤형 SSVEP-BCI 철자 입력기를 위한 적응 및 선택 기반 태스크 관련 성분 분석
Individual-specific steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) rely on individual data calibration, achieving high performance. However, existing methods use generalized channels and task-related subspaces, which limit their potential and lead to suboptimal s...
Saved in:
Published in | Journal of biomedical engineering research Vol. 46; no. 2; pp. 144 - 154 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Korean |
Published |
대한의용생체공학회
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Individual-specific steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) rely on individual data calibration, achieving high performance. However, existing methods use generalized channels and task-related subspaces, which limit their potential and lead to suboptimal solutions. To address this, we propose an adaptive selection strategy called AdapTRCA for developing a purely individual-specific SSVEP-BCI speller. AdapTRCA optimizes both channel and subspace selection. The channel selection process constrains sparse learning by spatial distance to identify the optimal subject-specific channels, while subspace selection adaptively determines the optimal number of subject-specific task-related subspaces by maximizing profile likelihood. Extensive experiments on two publicly available datasets with 40 classes show that AdapTRCA selects more meaningful channel subsets and determines the proper number of task-related subspaces compared to traditional methods. Moreover, when integrated with advanced calibration-based SSVEP decoding methods, AdapTRCA fully leverages the potential of individual-specific SSVEP-BCI. In conclusion, AdapTRCA enhances the performance of user-specific SSVEP-BCI spellers, promoting their practical application. |
---|---|
AbstractList | Individual-specific steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) rely on individual data calibration, achieving high performance. However, existing methods use generalized channels and task-related subspaces, which limit their potential and lead to suboptimal solutions. To address this, we propose an adaptive selection strategy called AdapTRCA for developing a purely individual-specific SSVEP-BCI speller. AdapTRCA optimizes both channel and subspace selection. The channel selection process constrains sparse learning by spatial distance to identify the optimal subject-specific channels, while subspace selection adaptively determines the optimal number of subject-specific task-related subspaces by maximizing profile likelihood. Extensive experiments on two publicly available datasets with 40 classes show that AdapTRCA selects more meaningful channel subsets and determines the proper number of task-related subspaces compared to traditional methods. Moreover, when integrated with advanced calibration-based SSVEP decoding methods, AdapTRCA fully leverages the potential of individual-specific SSVEP-BCI. In conclusion, AdapTRCA enhances the performance of user-specific SSVEP-BCI spellers, promoting their practical application. Individual-specific steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) rely on individual data calibration, achieving high performance. However, existing methods use generalized channels and task-related subspaces, which limit their potential and lead to suboptimal solutions. To address this, we propose an adaptive selection strategy called AdapTRCA for developing a purely individual-specific SSVEP-BCI speller. Adap- TRCA optimizes both channel and subspace selection. The channel selection process constrains sparse learning by spatial distance to identify the optimal subject-specific channels, while subspace selection adaptively determines the optimal number of subject-specific task-related subspaces by maximizing profile likelihood. Extensive experiments on two publicly available datasets with 40 classes show that AdapTRCA selects more meaningful channel subsets and determines the proper number of task-related subspaces compared to traditional methods. Moreover, when inte- grated with advanced calibration-based SSVEP decoding methods, AdapTRCA fully leverages the potential of indi- vidual-specific SSVEP-BCI. In conclusion, AdapTRCA enhances the performance of user-specific SSVEP-BCI spellers, promoting their practical application. KCI Citation Count: 0 |
Author | 김병형 Sang Hyun Lee 이상현 Byung Hyung Kim |
Author_xml | – sequence: 1 fullname: 이상현 – sequence: 2 fullname: 김병형 – sequence: 3 fullname: Sang Hyun Lee – sequence: 4 fullname: Byung Hyung Kim |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003199639$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNotjM1KAlEAhS9RkJnvcDdtgoH7N3fuLE2sLMFIaTuoMzemkTGcHiBz2rSpFoKEyiyUClxYhLToiZw779CYHTicxfdxdsCm3_adDZAhRAjNpCbfBBlMiKkhgYxtkAuCK5SGI12nZgZcq7uZenlX4ycYv47VYpIM-rBavSieaQeFElSf0Qqp8X0cTZff83j6A9UwTPpDqKKuGj3DeP4IVRglvRFc8fkAJr2hepgk3Rlcft3G0VuKP-JFCNOqcLQLtmS9FTi5_82C2mGxVjjWypWjUiFf1jyuc40SqjNmOxzXKZOOLblwmg5hUjcIR5jr1KGGMAwqqWyYNsayYXPTZjbmRArapFmwv771O9Lymq7Vrrt_e9m2vI6VP6-VLIwMJATjqby3lj03uHEt3w5a1kn-tEIQ0TEjHBPEDcLoL8pcgbQ |
ContentType | Journal Article |
DBID | JDI ACYCR |
DEWEY | 610.28 |
DatabaseName | KoreaScience Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
DocumentTitleAlternate | Adaptive Selection-based Task Related Component Analysis for a User-specific SSVEP-BCI Speller |
EISSN | 2288-9396 |
EndPage | 154 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10708846 JAKO202514261206724 |
GroupedDBID | 9ZL JDI ACYCR |
ID | FETCH-LOGICAL-k656-323544de61a34fedf68ece24f572601653e378773f3fb9d11fbd69d4d162f83c3 |
ISSN | 1229-0807 |
IngestDate | Sat May 03 03:15:12 EDT 2025 Fri Jun 06 04:18:26 EDT 2025 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Keywords | BCI speller Task related component analysis (TRCA) Brain-computer interface (BCI) Steady-state visual evoked potential (SSVEP) |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k656-323544de61a34fedf68ece24f572601653e378773f3fb9d11fbd69d4d162f83c3 |
Notes | KISTI1.1003/JNL.JAKO202514261206724 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202514261206724&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10708846 kisti_ndsl_JAKO202514261206724 |
PublicationCentury | 2000 |
PublicationDate | 2025-04 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04 |
PublicationDecade | 2020 |
PublicationTitle | Journal of biomedical engineering research |
PublicationTitleAlternate | Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering |
PublicationYear | 2025 |
Publisher | 대한의용생체공학회 |
Publisher_xml | – name: 대한의용생체공학회 |
SSID | ssj0000605539 ssib053377025 ssib030194549 ssib036278799 ssib044763777 |
Score | 1.9039642 |
Snippet | Individual-specific steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) rely on individual data calibration, achieving high... |
SourceID | nrf kisti |
SourceType | Open Website Open Access Repository |
StartPage | 144 |
SubjectTerms | 의공학 |
Title | 사용자 맞춤형 SSVEP-BCI 철자 입력기를 위한 적응 및 선택 기반 태스크 관련 성분 분석 |
URI | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202514261206724&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003199639 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 의공학회지, 2025, 46(2), , pp.144-154 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcNX2gOCAoIAoj8oS7Mkyir279u7RTl31QQGpBfUWOX5UUSBFpT3AAVEaLlyAQ6UKtVUOrQCph4JQxYEvapx_YHbtOAYV8TjEGc-sx7M7G8_MejKL0E0wIfUgpJFBiAUBShiERhAR0wiEFZIYDApX2YRzd-yp-3RmkS0ODbNS1tLaav1W-OzE_5X8j1YBB3qV_5L9B80WTAEBMOgXjqBhOP6VjrFfxdzCblUCwsWuUICPRUXHvoddR54AyrOxS7E_gQXHgunz8w_8e4ZXndYVEThUyhcqiDPFoYJdAFzscexVFIZhr5o1gptnTBnACgXNualogDWVDHAVn1REaCzvM4E5Abr-E1c4Cq73iao_3M1lBo5uNWtOZWJGLhbvM_VMxcEGWC-gnCYmfuN9Z2UH1AyNByUZ9bz2UbFGnvfFy_gR1Ts1ipwOmoBgIhfMA-nNYqCL5asAWE89XWvpt-NBFgOcZ9glfbbxqLz8YrFS1k5mMSxLGOB2O2WTkq-qNkqRfWYfzKzYZe5qmIwOzHA_9eAX61zkTM64s3elAKYMemXRfYsOo2Fiyg0j5p77_YcoPLAFLb26BQcFnsmDmJNSsCilGpDg7jtO_1Vz5r5UGFM78BVdg8BNRjMN8L9aK0nJ_1o4h87mqtPc7FdwHg01l0fRmVI5zVF0ai5PFLmAHqcvD9L3n9Ldt1r3w256tNfb2tSKaa-lXzqSlO6-6nb2j78ddve_a-l2u7e5raWd9XTnndY9fKOl7U5vY0eT9MMtrbexnb7e660faMdfX3Q7H4H8uXvU1uCTtncuooVJf6E6ZeSbixhNCGEMYhFGaRTbZkBoEkeJzeMwtmjCHFVkj5GYwLg5JCFJXUSmmdQjW0Q0Mm0r4SQkl9BIa7kVX0Yaj-X23U4Sx6AMJ7Q4s4QTyDfc4Gs7PBpD42r0aq3oycPaCWocQzdgWGvNsFGTxd7l99JyrblSg5B2umaCUeYQJVz5E5ur6PRggl5DI6sra_F18JhX6-NqhvwAC-6pKQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%82%AC%EC%9A%A9%EC%9E%90+%EB%A7%9E%EC%B6%A4%ED%98%95+SSVEP-BCI+%EC%B2%A0%EC%9E%90+%EC%9E%85%EB%A0%A5%EA%B8%B0%EB%A5%BC+%EC%9C%84%ED%95%9C+%EC%A0%81%EC%9D%91+%EB%B0%8F+%EC%84%A0%ED%83%9D+%EA%B8%B0%EB%B0%98+%ED%83%9C%EC%8A%A4%ED%81%AC+%EA%B4%80%EB%A0%A8+%EC%84%B1%EB%B6%84+%EB%B6%84%EC%84%9D&rft.jtitle=Journal+of+biomedical+engineering+research&rft.au=%EC%9D%B4%EC%83%81%ED%98%84&rft.au=%EA%B9%80%EB%B3%91%ED%98%95&rft.au=Sang+Hyun+Lee&rft.au=Byung+Hyung+Kim&rft.date=2025-04-01&rft.issn=1229-0807&rft.volume=46&rft.issue=2&rft.spage=144&rft.epage=154&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202514261206724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-0807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-0807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-0807&client=summon |