사용자 맞춤형 SSVEP-BCI 철자 입력기를 위한 적응 및 선택 기반 태스크 관련 성분 분석

Individual-specific steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) rely on individual data calibration, achieving high performance. However, existing methods use generalized channels and task-related subspaces, which limit their potential and lead to suboptimal s...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical engineering research Vol. 46; no. 2; pp. 144 - 154
Main Authors 이상현, 김병형, Sang Hyun Lee, Byung Hyung Kim
Format Journal Article
LanguageKorean
Published 대한의용생체공학회 01.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Individual-specific steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) rely on individual data calibration, achieving high performance. However, existing methods use generalized channels and task-related subspaces, which limit their potential and lead to suboptimal solutions. To address this, we propose an adaptive selection strategy called AdapTRCA for developing a purely individual-specific SSVEP-BCI speller. AdapTRCA optimizes both channel and subspace selection. The channel selection process constrains sparse learning by spatial distance to identify the optimal subject-specific channels, while subspace selection adaptively determines the optimal number of subject-specific task-related subspaces by maximizing profile likelihood. Extensive experiments on two publicly available datasets with 40 classes show that AdapTRCA selects more meaningful channel subsets and determines the proper number of task-related subspaces compared to traditional methods. Moreover, when integrated with advanced calibration-based SSVEP decoding methods, AdapTRCA fully leverages the potential of individual-specific SSVEP-BCI. In conclusion, AdapTRCA enhances the performance of user-specific SSVEP-BCI spellers, promoting their practical application.
AbstractList Individual-specific steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) rely on individual data calibration, achieving high performance. However, existing methods use generalized channels and task-related subspaces, which limit their potential and lead to suboptimal solutions. To address this, we propose an adaptive selection strategy called AdapTRCA for developing a purely individual-specific SSVEP-BCI speller. AdapTRCA optimizes both channel and subspace selection. The channel selection process constrains sparse learning by spatial distance to identify the optimal subject-specific channels, while subspace selection adaptively determines the optimal number of subject-specific task-related subspaces by maximizing profile likelihood. Extensive experiments on two publicly available datasets with 40 classes show that AdapTRCA selects more meaningful channel subsets and determines the proper number of task-related subspaces compared to traditional methods. Moreover, when integrated with advanced calibration-based SSVEP decoding methods, AdapTRCA fully leverages the potential of individual-specific SSVEP-BCI. In conclusion, AdapTRCA enhances the performance of user-specific SSVEP-BCI spellers, promoting their practical application.
Individual-specific steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) rely on individual data calibration, achieving high performance. However, existing methods use generalized channels and task-related subspaces, which limit their potential and lead to suboptimal solutions. To address this, we propose an adaptive selection strategy called AdapTRCA for developing a purely individual-specific SSVEP-BCI speller. Adap- TRCA optimizes both channel and subspace selection. The channel selection process constrains sparse learning by spatial distance to identify the optimal subject-specific channels, while subspace selection adaptively determines the optimal number of subject-specific task-related subspaces by maximizing profile likelihood. Extensive experiments on two publicly available datasets with 40 classes show that AdapTRCA selects more meaningful channel subsets and determines the proper number of task-related subspaces compared to traditional methods. Moreover, when inte- grated with advanced calibration-based SSVEP decoding methods, AdapTRCA fully leverages the potential of indi- vidual-specific SSVEP-BCI. In conclusion, AdapTRCA enhances the performance of user-specific SSVEP-BCI spellers, promoting their practical application. KCI Citation Count: 0
Author 김병형
Sang Hyun Lee
이상현
Byung Hyung Kim
Author_xml – sequence: 1
  fullname: 이상현
– sequence: 2
  fullname: 김병형
– sequence: 3
  fullname: Sang Hyun Lee
– sequence: 4
  fullname: Byung Hyung Kim
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003199639$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotjM1KAlEAhS9RkJnvcDdtgoH7N3fuLE2sLMFIaTuoMzemkTGcHiBz2rSpFoKEyiyUClxYhLToiZw779CYHTicxfdxdsCm3_adDZAhRAjNpCbfBBlMiKkhgYxtkAuCK5SGI12nZgZcq7uZenlX4ycYv47VYpIM-rBavSieaQeFElSf0Qqp8X0cTZff83j6A9UwTPpDqKKuGj3DeP4IVRglvRFc8fkAJr2hepgk3Rlcft3G0VuKP-JFCNOqcLQLtmS9FTi5_82C2mGxVjjWypWjUiFf1jyuc40SqjNmOxzXKZOOLblwmg5hUjcIR5jr1KGGMAwqqWyYNsayYXPTZjbmRArapFmwv771O9Lymq7Vrrt_e9m2vI6VP6-VLIwMJATjqby3lj03uHEt3w5a1kn-tEIQ0TEjHBPEDcLoL8pcgbQ
ContentType Journal Article
DBID JDI
ACYCR
DEWEY 610.28
DatabaseName KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
DocumentTitleAlternate Adaptive Selection-based Task Related Component Analysis for a User-specific SSVEP-BCI Speller
EISSN 2288-9396
EndPage 154
ExternalDocumentID oai_kci_go_kr_ARTI_10708846
JAKO202514261206724
GroupedDBID 9ZL
JDI
ACYCR
ID FETCH-LOGICAL-k656-323544de61a34fedf68ece24f572601653e378773f3fb9d11fbd69d4d162f83c3
ISSN 1229-0807
IngestDate Sat May 03 03:15:12 EDT 2025
Fri Jun 06 04:18:26 EDT 2025
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords BCI speller
Task related component analysis (TRCA)
Brain-computer interface (BCI)
Steady-state visual evoked potential (SSVEP)
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k656-323544de61a34fedf68ece24f572601653e378773f3fb9d11fbd69d4d162f83c3
Notes KISTI1.1003/JNL.JAKO202514261206724
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202514261206724&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10708846
kisti_ndsl_JAKO202514261206724
PublicationCentury 2000
PublicationDate 2025-04
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04
PublicationDecade 2020
PublicationTitle Journal of biomedical engineering research
PublicationTitleAlternate Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering
PublicationYear 2025
Publisher 대한의용생체공학회
Publisher_xml – name: 대한의용생체공학회
SSID ssj0000605539
ssib053377025
ssib030194549
ssib036278799
ssib044763777
Score 1.9039642
Snippet Individual-specific steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) rely on individual data calibration, achieving high...
SourceID nrf
kisti
SourceType Open Website
Open Access Repository
StartPage 144
SubjectTerms 의공학
Title 사용자 맞춤형 SSVEP-BCI 철자 입력기를 위한 적응 및 선택 기반 태스크 관련 성분 분석
URI http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202514261206724&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003199639
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 의공학회지, 2025, 46(2), , pp.144-154
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcNX2gOCAoIAoj8oS7Mkyir279u7RTl31QQGpBfUWOX5UUSBFpT3AAVEaLlyAQ6UKtVUOrQCph4JQxYEvapx_YHbtOAYV8TjEGc-sx7M7G8_MejKL0E0wIfUgpJFBiAUBShiERhAR0wiEFZIYDApX2YRzd-yp-3RmkS0ODbNS1tLaav1W-OzE_5X8j1YBB3qV_5L9B80WTAEBMOgXjqBhOP6VjrFfxdzCblUCwsWuUICPRUXHvoddR54AyrOxS7E_gQXHgunz8w_8e4ZXndYVEThUyhcqiDPFoYJdAFzscexVFIZhr5o1gptnTBnACgXNualogDWVDHAVn1REaCzvM4E5Abr-E1c4Cq73iao_3M1lBo5uNWtOZWJGLhbvM_VMxcEGWC-gnCYmfuN9Z2UH1AyNByUZ9bz2UbFGnvfFy_gR1Ts1ipwOmoBgIhfMA-nNYqCL5asAWE89XWvpt-NBFgOcZ9glfbbxqLz8YrFS1k5mMSxLGOB2O2WTkq-qNkqRfWYfzKzYZe5qmIwOzHA_9eAX61zkTM64s3elAKYMemXRfYsOo2Fiyg0j5p77_YcoPLAFLb26BQcFnsmDmJNSsCilGpDg7jtO_1Vz5r5UGFM78BVdg8BNRjMN8L9aK0nJ_1o4h87mqtPc7FdwHg01l0fRmVI5zVF0ai5PFLmAHqcvD9L3n9Ldt1r3w256tNfb2tSKaa-lXzqSlO6-6nb2j78ddve_a-l2u7e5raWd9XTnndY9fKOl7U5vY0eT9MMtrbexnb7e660faMdfX3Q7H4H8uXvU1uCTtncuooVJf6E6ZeSbixhNCGEMYhFGaRTbZkBoEkeJzeMwtmjCHFVkj5GYwLg5JCFJXUSmmdQjW0Q0Mm0r4SQkl9BIa7kVX0Yaj-X23U4Sx6AMJ7Q4s4QTyDfc4Gs7PBpD42r0aq3oycPaCWocQzdgWGvNsFGTxd7l99JyrblSg5B2umaCUeYQJVz5E5ur6PRggl5DI6sra_F18JhX6-NqhvwAC-6pKQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%82%AC%EC%9A%A9%EC%9E%90+%EB%A7%9E%EC%B6%A4%ED%98%95+SSVEP-BCI+%EC%B2%A0%EC%9E%90+%EC%9E%85%EB%A0%A5%EA%B8%B0%EB%A5%BC+%EC%9C%84%ED%95%9C+%EC%A0%81%EC%9D%91+%EB%B0%8F+%EC%84%A0%ED%83%9D+%EA%B8%B0%EB%B0%98+%ED%83%9C%EC%8A%A4%ED%81%AC+%EA%B4%80%EB%A0%A8+%EC%84%B1%EB%B6%84+%EB%B6%84%EC%84%9D&rft.jtitle=Journal+of+biomedical+engineering+research&rft.au=%EC%9D%B4%EC%83%81%ED%98%84&rft.au=%EA%B9%80%EB%B3%91%ED%98%95&rft.au=Sang+Hyun+Lee&rft.au=Byung+Hyung+Kim&rft.date=2025-04-01&rft.issn=1229-0807&rft.volume=46&rft.issue=2&rft.spage=144&rft.epage=154&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202514261206724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-0807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-0807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-0807&client=summon