인공신경망 앙상블 모델 기반 동중국해 북부해역의 3차원 수온장 추정
This study used an artificial neural network model to predict the three-dimensional temperature field by capturing the non-linear relationships between input and target data. Unlike most previous studies, which focused on open ocean regions, this research develops a model specifically designed to ad...
Saved in:
Published in | Ocean and polar research Vol. 46; no. 4; pp. 183 - 195 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Korean |
Published |
한국해양과학기술원
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1598-141X 2234-7313 |
DOI | 10.4217/OPR.2024020 |
Cover
Abstract | This study used an artificial neural network model to predict the three-dimensional temperature field by capturing the non-linear relationships between input and target data. Unlike most previous studies, which focused on open ocean regions, this research develops a model specifically designed to address the unique characteristics of the coastal areas in the Northern East China Sea. Vertical temperature profiles observed from 2000 to 2022 were used as target data, while input data representing temperature structures or forcing temperature variations were utilized for training the artificial neural network model. The optimized artificial neural network model achieved a root mean square error of 1.1℃ on the test dataset. Therefore, the artificial neural network model established in this study is expected to be effectively applied to predict the three-dimensional temperature fields in the coastal seas. |
---|---|
AbstractList | This study used an artificial neural network model to predict the three-dimensional temperature field by capturing the non-linear relationships between input and target data. Unlike most previous studies, which focused on open ocean regions, this research develops a model specifically designed to address the unique characteristics of the coastal areas in the Northern East China Sea. Vertical temperature profiles observed from 2000 to 2022 were used as target data, while input data representing temperature structures or forcing temperature variations were utilized for training the artificial neural network model. The optimized artificial neural network model achieved a root mean square error of 1.1℃ on the test dataset. Therefore, the artificial neural network model established in this study is expected to be effectively applied to predict the three-dimensional temperature fields in the coastal seas. This study used an artificial neural network model to predict the three-dimensional temperature field by capturing the non-linear relationships between input and target data. Unlike most previous studies, which focused on open ocean regions, this research develops a model specifically designed to address the unique characteristics of the coastal areas in the Northern East China Sea. Vertical temperature profiles observed from 2000 to 2022 were used as target data, while input data representing temperature structures or forcing temperature variations were utilized for training the artificial neural network model. The optimized artificial neural network model achieved a root mean square error of 1.1°C on the test dataset. Therefore, the artificial neural network model established in this study is expected to be effectively applied to predict the three-dimensional temperature fields in the coastal seas. KCI Citation Count: 0 |
Author | 박재훈 Eun-Joo Lee 이재욱 이은주 Jae-Wook Lee Jae-Hun Park |
Author_xml | – sequence: 1 fullname: 이재욱 – sequence: 2 fullname: 이은주 – sequence: 3 fullname: 박재훈 – sequence: 4 fullname: Jae-Wook Lee – sequence: 5 fullname: Eun-Joo Lee – sequence: 6 fullname: Jae-Hun Park |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003158362$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNotkMtKAlEAhg9hkFmrXuBs2gRj5zZnnKVIF0swxEWbGOZyJqYRBacHSNoEERUojYThokgCQSplNr3QnNM7ZNnq-xcf3-JfBZlmqykA2MAozwg2tqtHtTxBhCGClkCWEMo0g2KaAVmsmwUNM3y8Alaj6AwhblDOsuBEDZL0Y6quh-n7l3wdQNXrq8uOTLpQvo3kTQLTZCInMZS3ffV8n07H371PKGcdObuYL_UwVoMYUjUZqcc7qK5iFY_U0wtUs64a9tbAsm83IrH-zxyo7-7US_tapbpXLhUrWsh1qnncMA3Xsz1Bfcf3hbAFwkhg10OOY2NKTeYS4jCnwJFwDU48bHJMXJvahucITnNga5Fttn0rdAOrZQd_PG1ZYdsq1uplCyPOOdLpXN5cyGEQnQdW04sa1kHxsPr7G6aMmhwxTnT6A7e3gG0 |
ContentType | Journal Article |
DBID | JDI ACYCR |
DEWEY | 551.46 |
DOI | 10.4217/OPR.2024020 |
DatabaseName | [Open Access] KoreaScience Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Oceanography |
DocumentTitleAlternate | Estimation of Three-Dimensional Temperature in the Northern East China Sea Using an Ensemble Model Based on Artificial Neural Networks |
EISSN | 2234-7313 |
EndPage | 195 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10666053 JAKO202413439604625 |
GroupedDBID | 123 2WC 9ZL ACYCR ALMA_UNASSIGNED_HOLDINGS EBD EDH IPNFZ JDI KQ8 KVFHK OK1 RIG RNS ZBA ZY4 ~02 ABTAH |
ID | FETCH-LOGICAL-k653-d6797cdade3fbffeeae010e1cd0bba13394c22b4b860ec762d19612ca3a7dbe63 |
ISSN | 1598-141X |
IngestDate | Sun Mar 09 07:54:53 EDT 2025 Wed Sep 03 02:43:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | Convolutional Long Short-Term Memory ensemble model 3-D sea temperature ConvLSTM |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k653-d6797cdade3fbffeeae010e1cd0bba13394c22b4b860ec762d19612ca3a7dbe63 |
Notes | KISTI1.1003/JNL.JAKO202413439604625 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202413439604625&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 13 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10666053 kisti_ndsl_JAKO202413439604625 |
PublicationCentury | 2000 |
PublicationDate | 2024-12 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12 |
PublicationDecade | 2020 |
PublicationTitle | Ocean and polar research |
PublicationTitleAlternate | Ocean and polar research |
PublicationYear | 2024 |
Publisher | 한국해양과학기술원 |
Publisher_xml | – name: 한국해양과학기술원 |
SSID | ssj0067364 ssib053377561 ssib026971478 |
Score | 2.2994225 |
Snippet | This study used an artificial neural network model to predict the three-dimensional temperature field by capturing the non-linear relationships between input... |
SourceID | nrf kisti |
SourceType | Open Website Open Access Repository |
StartPage | 183 |
SubjectTerms | 해양학 |
Title | 인공신경망 앙상블 모델 기반 동중국해 북부해역의 3차원 수온장 추정 |
URI | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202413439604625&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003158362 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Ocean and Polar Research, 2024, 46(4), , pp.183-195 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEA9tfRFB_MT6UQK6T0dqks3XPibXK_UqnkrFvsiRzYeUkzs47158svgiiKjQ4hWp9EGxCIWittyL_9Al_g_OTpJrrCLVl7A3OzeZnUkyv0lmdyXpGgQ5nYcGV5zQEVNyzFjxTT1WAt_3bUBzcBlgtcUta-GeUV82lycmG6WqpX6PzwZP_jiv5H-8CjTwq5gl-w-eHQsFArTBv3AED8PxSD4mtSphc8RzSM0lHiWeKSiOR1wVKTrx5kgNftrAVkFukzCGTBQwpOiDPzOjglwucR3RcITICkpwiKcil0qYg1zOfC7BNQjTkMkkLpxmTgj3MlGeVUi3RClF0Yca2MiNioNIKpogXZwZaB5hKirqgFoZySn6asQ1sQ-EMpQFw8z2zizgdSMQHxZw7QORslfypYzGr7xvRlGl7kfK_SK1yGm1flupdzoH39O6LeRb6LfLr0V041CJST4yVv3dDqiyVZgIfFMtmFnJsjhQVx2PvRwjGCTeBu70AyEUaQCyDMWmGi3FAi3boSeHFVpmj8MRy9BxmavG7buzYhSqrh4E5qIY4VC8_mVl8Faw0nzYaba6Tch_bjQ1kY7Cc3VSOqbbNtYtLN4ZP2B1i9laaf02gPq2jRObM-giavywDKMYYTahVeh4vaQh5HEiuVkBONbuxiU4tnRKOpnnUbKb3RSnpYlW54x0Av2fL8J-VnqQbg5HX_fSF1ujL9-TT5tyur6RPltNhmty8nk7eTmUR8PdZHcgJ6820g9vRns7P9a_ycn-arL_FFrp2510cyDTdHc7ffdaTp8P0sF2-v6jnO6vpVvr56Sl-dpSdUHJtxNRWpZJldCymR2EfhjRmMdxFPmRqqmRFoQq575GKTMCXecGdyw1CgAjhBCcND3wqW-HPLLoeWmq3WlHFyQZkgYOHmcBZ7Ghhb7POeBkFtLAYCan9rQ0gwZqtsPHj5p1d7EhLKdRAP-WmAxuTktXwXLovL848eKRuC5Jxw-u_8vSVK_bj64AUO7xGXT-T1s7qF0 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%9D%B8%EA%B3%B5%EC%8B%A0%EA%B2%BD%EB%A7%9D+%EC%95%99%EC%83%81%EB%B8%94+%EB%AA%A8%EB%8D%B8+%EA%B8%B0%EB%B0%98+%EB%8F%99%EC%A4%91%EA%B5%AD%ED%95%B4+%EB%B6%81%EB%B6%80%ED%95%B4%EC%97%AD%EC%9D%98+3%EC%B0%A8%EC%9B%90+%EC%88%98%EC%98%A8%EC%9E%A5+%EC%B6%94%EC%A0%95&rft.jtitle=Ocean+and+polar+research&rft.au=Lee+Jae-Wook&rft.au=Lee+Eun-Joo&rft.au=Park+Jae-Hun&rft.date=2024-12-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%95%B4%EC%96%91%EA%B3%BC%ED%95%99%EA%B8%B0%EC%88%A0%EC%9B%90&rft.issn=1598-141X&rft.eissn=2234-7313&rft.spage=183&rft.epage=195&rft_id=info:doi/10.4217%2FOPR.2024020&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10666053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-141X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-141X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-141X&client=summon |