인공신경망 앙상블 모델 기반 동중국해 북부해역의 3차원 수온장 추정

This study used an artificial neural network model to predict the three-dimensional temperature field by capturing the non-linear relationships between input and target data. Unlike most previous studies, which focused on open ocean regions, this research develops a model specifically designed to ad...

Full description

Saved in:
Bibliographic Details
Published inOcean and polar research Vol. 46; no. 4; pp. 183 - 195
Main Authors 이재욱, 이은주, 박재훈, Jae-Wook Lee, Eun-Joo Lee, Jae-Hun Park
Format Journal Article
LanguageKorean
Published 한국해양과학기술원 01.12.2024
Subjects
Online AccessGet full text
ISSN1598-141X
2234-7313
DOI10.4217/OPR.2024020

Cover

Abstract This study used an artificial neural network model to predict the three-dimensional temperature field by capturing the non-linear relationships between input and target data. Unlike most previous studies, which focused on open ocean regions, this research develops a model specifically designed to address the unique characteristics of the coastal areas in the Northern East China Sea. Vertical temperature profiles observed from 2000 to 2022 were used as target data, while input data representing temperature structures or forcing temperature variations were utilized for training the artificial neural network model. The optimized artificial neural network model achieved a root mean square error of 1.1℃ on the test dataset. Therefore, the artificial neural network model established in this study is expected to be effectively applied to predict the three-dimensional temperature fields in the coastal seas.
AbstractList This study used an artificial neural network model to predict the three-dimensional temperature field by capturing the non-linear relationships between input and target data. Unlike most previous studies, which focused on open ocean regions, this research develops a model specifically designed to address the unique characteristics of the coastal areas in the Northern East China Sea. Vertical temperature profiles observed from 2000 to 2022 were used as target data, while input data representing temperature structures or forcing temperature variations were utilized for training the artificial neural network model. The optimized artificial neural network model achieved a root mean square error of 1.1℃ on the test dataset. Therefore, the artificial neural network model established in this study is expected to be effectively applied to predict the three-dimensional temperature fields in the coastal seas.
This study used an artificial neural network model to predict the three-dimensional temperature field by capturing the non-linear relationships between input and target data. Unlike most previous studies, which focused on open ocean regions, this research develops a model specifically designed to address the unique characteristics of the coastal areas in the Northern East China Sea. Vertical temperature profiles observed from 2000 to 2022 were used as target data, while input data representing temperature structures or forcing temperature variations were utilized for training the artificial neural network model. The optimized artificial neural network model achieved a root mean square error of 1.1°C on the test dataset. Therefore, the artificial neural network model established in this study is expected to be effectively applied to predict the three-dimensional temperature fields in the coastal seas. KCI Citation Count: 0
Author 박재훈
Eun-Joo Lee
이재욱
이은주
Jae-Wook Lee
Jae-Hun Park
Author_xml – sequence: 1
  fullname: 이재욱
– sequence: 2
  fullname: 이은주
– sequence: 3
  fullname: 박재훈
– sequence: 4
  fullname: Jae-Wook Lee
– sequence: 5
  fullname: Eun-Joo Lee
– sequence: 6
  fullname: Jae-Hun Park
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003158362$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotkMtKAlEAhg9hkFmrXuBs2gRj5zZnnKVIF0swxEWbGOZyJqYRBacHSNoEERUojYThokgCQSplNr3QnNM7ZNnq-xcf3-JfBZlmqykA2MAozwg2tqtHtTxBhCGClkCWEMo0g2KaAVmsmwUNM3y8Alaj6AwhblDOsuBEDZL0Y6quh-n7l3wdQNXrq8uOTLpQvo3kTQLTZCInMZS3ffV8n07H371PKGcdObuYL_UwVoMYUjUZqcc7qK5iFY_U0wtUs64a9tbAsm83IrH-zxyo7-7US_tapbpXLhUrWsh1qnncMA3Xsz1Bfcf3hbAFwkhg10OOY2NKTeYS4jCnwJFwDU48bHJMXJvahucITnNga5Fttn0rdAOrZQd_PG1ZYdsq1uplCyPOOdLpXN5cyGEQnQdW04sa1kHxsPr7G6aMmhwxTnT6A7e3gG0
ContentType Journal Article
DBID JDI
ACYCR
DEWEY 551.46
DOI 10.4217/OPR.2024020
DatabaseName [Open Access] KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Oceanography
DocumentTitleAlternate Estimation of Three-Dimensional Temperature in the Northern East China Sea Using an Ensemble Model Based on Artificial Neural Networks
EISSN 2234-7313
EndPage 195
ExternalDocumentID oai_kci_go_kr_ARTI_10666053
JAKO202413439604625
GroupedDBID 123
2WC
9ZL
ACYCR
ALMA_UNASSIGNED_HOLDINGS
EBD
EDH
IPNFZ
JDI
KQ8
KVFHK
OK1
RIG
RNS
ZBA
ZY4
~02
ABTAH
ID FETCH-LOGICAL-k653-d6797cdade3fbffeeae010e1cd0bba13394c22b4b860ec762d19612ca3a7dbe63
ISSN 1598-141X
IngestDate Sun Mar 09 07:54:53 EDT 2025
Wed Sep 03 02:43:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Convolutional Long Short-Term Memory
ensemble model
3-D sea temperature
ConvLSTM
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k653-d6797cdade3fbffeeae010e1cd0bba13394c22b4b860ec762d19612ca3a7dbe63
Notes KISTI1.1003/JNL.JAKO202413439604625
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202413439604625&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10666053
kisti_ndsl_JAKO202413439604625
PublicationCentury 2000
PublicationDate 2024-12
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12
PublicationDecade 2020
PublicationTitle Ocean and polar research
PublicationTitleAlternate Ocean and polar research
PublicationYear 2024
Publisher 한국해양과학기술원
Publisher_xml – name: 한국해양과학기술원
SSID ssj0067364
ssib053377561
ssib026971478
Score 2.2994225
Snippet This study used an artificial neural network model to predict the three-dimensional temperature field by capturing the non-linear relationships between input...
SourceID nrf
kisti
SourceType Open Website
Open Access Repository
StartPage 183
SubjectTerms 해양학
Title 인공신경망 앙상블 모델 기반 동중국해 북부해역의 3차원 수온장 추정
URI http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202413439604625&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003158362
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Ocean and Polar Research, 2024, 46(4), , pp.183-195
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEA9tfRFB_MT6UQK6T0dqks3XPibXK_UqnkrFvsiRzYeUkzs47158svgiiKjQ4hWp9EGxCIWittyL_9Al_g_OTpJrrCLVl7A3OzeZnUkyv0lmdyXpGgQ5nYcGV5zQEVNyzFjxTT1WAt_3bUBzcBlgtcUta-GeUV82lycmG6WqpX6PzwZP_jiv5H-8CjTwq5gl-w-eHQsFArTBv3AED8PxSD4mtSphc8RzSM0lHiWeKSiOR1wVKTrx5kgNftrAVkFukzCGTBQwpOiDPzOjglwucR3RcITICkpwiKcil0qYg1zOfC7BNQjTkMkkLpxmTgj3MlGeVUi3RClF0Yca2MiNioNIKpogXZwZaB5hKirqgFoZySn6asQ1sQ-EMpQFw8z2zizgdSMQHxZw7QORslfypYzGr7xvRlGl7kfK_SK1yGm1flupdzoH39O6LeRb6LfLr0V041CJST4yVv3dDqiyVZgIfFMtmFnJsjhQVx2PvRwjGCTeBu70AyEUaQCyDMWmGi3FAi3boSeHFVpmj8MRy9BxmavG7buzYhSqrh4E5qIY4VC8_mVl8Faw0nzYaba6Tch_bjQ1kY7Cc3VSOqbbNtYtLN4ZP2B1i9laaf02gPq2jRObM-giavywDKMYYTahVeh4vaQh5HEiuVkBONbuxiU4tnRKOpnnUbKb3RSnpYlW54x0Av2fL8J-VnqQbg5HX_fSF1ujL9-TT5tyur6RPltNhmty8nk7eTmUR8PdZHcgJ6820g9vRns7P9a_ycn-arL_FFrp2510cyDTdHc7ffdaTp8P0sF2-v6jnO6vpVvr56Sl-dpSdUHJtxNRWpZJldCymR2EfhjRmMdxFPmRqqmRFoQq575GKTMCXecGdyw1CgAjhBCcND3wqW-HPLLoeWmq3WlHFyQZkgYOHmcBZ7Ghhb7POeBkFtLAYCan9rQ0gwZqtsPHj5p1d7EhLKdRAP-WmAxuTktXwXLovL848eKRuC5Jxw-u_8vSVK_bj64AUO7xGXT-T1s7qF0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%9D%B8%EA%B3%B5%EC%8B%A0%EA%B2%BD%EB%A7%9D+%EC%95%99%EC%83%81%EB%B8%94+%EB%AA%A8%EB%8D%B8+%EA%B8%B0%EB%B0%98+%EB%8F%99%EC%A4%91%EA%B5%AD%ED%95%B4+%EB%B6%81%EB%B6%80%ED%95%B4%EC%97%AD%EC%9D%98+3%EC%B0%A8%EC%9B%90+%EC%88%98%EC%98%A8%EC%9E%A5+%EC%B6%94%EC%A0%95&rft.jtitle=Ocean+and+polar+research&rft.au=Lee+Jae-Wook&rft.au=Lee+Eun-Joo&rft.au=Park+Jae-Hun&rft.date=2024-12-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%95%B4%EC%96%91%EA%B3%BC%ED%95%99%EA%B8%B0%EC%88%A0%EC%9B%90&rft.issn=1598-141X&rft.eissn=2234-7313&rft.spage=183&rft.epage=195&rft_id=info:doi/10.4217%2FOPR.2024020&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10666053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-141X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-141X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-141X&client=summon