문자 인식을 위한 영상 복원
Because of the mechanical problems of input camera equipment, image restoration process is performed in order to minimize recognition errors due to the noise problem generated in test data image. The image restoration method resolves the noise problem by examining the numbers and positions of the Di...
Saved in:
Published in | Journal of the convergence on culture technology : JCCT Vol. 4; no. 3; pp. 241 - 246 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Korean |
Published |
국제문화기술진흥원
01.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2384-0358 2384-0366 |
DOI | 10.17703/JCCT.2018.4.3.241 |
Cover
Loading…
Abstract | Because of the mechanical problems of input camera equipment, image restoration process is performed in order to minimize recognition errors due to the noise problem generated in test data image. The image restoration method resolves the noise problem by examining the numbers and positions of the Direct neighbors and the Indirect neighbors for each pixel constituting the test data. As a result, satisfactory recognition result can be obtained by eliminating the noise problem generated in the test data through the image restoration process as much as possible and also by calculating the differences between the learning data and the test data in the area unit, thereby reducing the possibility of recognition error by the noise problem. 영상 기기의 기계적인 문제로 인해 실험 데이터에 발생한 잡음으로 인한 인식 오류를 최소화하기 위해서 영상복원 과정을 거친다. 영상 복원 방법은 실험 데이터를 구성하는 각각의 픽셀에 대해 Direct Neighbor와 Indirect Neighbor의 개수와 위치를 조사해서 잡음을 해결한다. 결과적으로, 영상 복원 과정을 통해 실험 데이터에 발생한 잡음을 최대한 제거하고, 영역 단위로 학습 데이터와 실험 데이터의 차이를 계산해서 잡음에 의한 인식 오류 가능성을 낮춤으로써 만족할만한 인식 결과를 얻을 수 있다. |
---|---|
AbstractList | 영상 기기의 기계적인 문제로 인해 실험 데이터에 발생한 잡음으로 인한 인식 오류를 최소화하기 위해서 영상복원 과정을 거친다. 영상 복원 방법은 실험 데이터를 구성하는 각각의 픽셀에 대해 Direct Neighbor와 Indirect Neighbor의 개수와 위치를 조사해서 잡음을 해결한다. 결과적으로, 영상 복원 과정을 통해 실험 데이터에 발생한 잡음을 최대한 제거하고, 영역 단위로 학습 데이터와 실험 데이터의 차이를 계산해서 잡음에 의한 인식 오류 가능성을낮춤으로써 만족할만한 인식 결과를 얻을 수 있다. Because of the mechanical problems of input camera equipment, image restoration process is performed in order to minimize recognition errors due to the noise problem generated in test data image. The image restoration method resolves the noise problem by examining the numbers and positions of the Direct neighbors and the Indirect neighbors for each pixel constituting the test data. As a result, satisfactory recognition result can be obtained by eliminating the noise problem generated in the test data through the image restoration process as much as possible and also by calculating the differences between the learning data and the test data in the area unit, thereby reducing the possibility of recognition error by the noise problem. KCI Citation Count: 2 Because of the mechanical problems of input camera equipment, image restoration process is performed in order to minimize recognition errors due to the noise problem generated in test data image. The image restoration method resolves the noise problem by examining the numbers and positions of the Direct neighbors and the Indirect neighbors for each pixel constituting the test data. As a result, satisfactory recognition result can be obtained by eliminating the noise problem generated in the test data through the image restoration process as much as possible and also by calculating the differences between the learning data and the test data in the area unit, thereby reducing the possibility of recognition error by the noise problem. 영상 기기의 기계적인 문제로 인해 실험 데이터에 발생한 잡음으로 인한 인식 오류를 최소화하기 위해서 영상복원 과정을 거친다. 영상 복원 방법은 실험 데이터를 구성하는 각각의 픽셀에 대해 Direct Neighbor와 Indirect Neighbor의 개수와 위치를 조사해서 잡음을 해결한다. 결과적으로, 영상 복원 과정을 통해 실험 데이터에 발생한 잡음을 최대한 제거하고, 영역 단위로 학습 데이터와 실험 데이터의 차이를 계산해서 잡음에 의한 인식 오류 가능성을 낮춤으로써 만족할만한 인식 결과를 얻을 수 있다. |
Author | 유석원 Yoo, Suk Won |
Author_xml | – sequence: 1 fullname: 유석원 – sequence: 2 fullname: Yoo, Suk Won |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002380776$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNo9kMtKw0AYhQepYK19AVfZdOEicSb_3LIMwUtroSDZD5kkIyElgcYXKHbnphtBaOMTuBOh79TxHYxWXH2Hw8dZnFPUq-oqR-icYI8IgeFyEkWx52MiPeqB51NyhPo-SOpi4Lz3n5k8QcOmKTSmVFAWENJHo_37zr6tHdvu7HNr25Vjt6uvl61jX5f2aensPz7tZn2Gjk0yb_LhHwcovr6Ko1t3OrsZR-HULTnlLrDAZDpNNGY015nJIGeUEJ1ggZmUXc8hoCwFSH0cMMOEENoYTDBPWUooDNDFYbZaGFWmhaqT4pcPtSoXKryPxwoEk0zyzh0d3LJoHgtVZc1cTcK72c8NvqSdBCB8Cd8lTlpl |
ContentType | Journal Article |
DBID | JDI ACYCR |
DEWEY | 306 |
DOI | 10.17703/JCCT.2018.4.3.241 |
DatabaseName | KoreaScience Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Social Sciences (General) |
DocumentTitleAlternate | Image Restoration for Character Recognition |
EISSN | 2384-0366 |
EndPage | 246 |
ExternalDocumentID | oai_kci_go_kr_ARTI_3758586 JAKO201828458533728 |
GroupedDBID | .UV JDI ACYCR |
ID | FETCH-LOGICAL-k646-359fdbcab054ebdfd3e5411ba070588ab063945c33c2095f5777bff0106c5c143 |
ISSN | 2384-0358 |
IngestDate | Sun Mar 09 07:54:15 EDT 2025 Fri Dec 22 12:01:12 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k646-359fdbcab054ebdfd3e5411ba070588ab063945c33c2095f5777bff0106c5c143 |
Notes | KISTI1.1003/JNL.JAKO201828458533728 http://www.ipact.kr/eng/iconf/jcct/sub05.php |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201828458533728&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 6 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3758586 kisti_ndsl_JAKO201828458533728 |
PublicationCentury | 2000 |
PublicationDate | 2018-08 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08 |
PublicationDecade | 2010 |
PublicationTitle | Journal of the convergence on culture technology : JCCT |
PublicationTitleAlternate | 문화기술의 융합 |
PublicationYear | 2018 |
Publisher | 국제문화기술진흥원 |
Publisher_xml | – name: 국제문화기술진흥원 |
SSID | ssib044745911 ssib053376951 ssib023738654 ssib022005506 ssib023402271 |
Score | 1.6611624 |
Snippet | Because of the mechanical problems of input camera equipment, image restoration process is performed in order to minimize recognition errors due to the noise... 영상 기기의 기계적인 문제로 인해 실험 데이터에 발생한 잡음으로 인한 인식 오류를 최소화하기 위해서 영상복원 과정을 거친다. 영상 복원 방법은 실험 데이터를 구성하는 각각의 픽셀에 대해 Direct Neighbor와 Indirect Neighbor의 개수와 위치를 조사해서 잡음을... |
SourceID | nrf kisti |
SourceType | Open Website Open Access Repository |
StartPage | 241 |
SubjectTerms | 과학기술학 |
Title | 문자 인식을 위한 영상 복원 |
URI | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201828458533728&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002380776 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 문화기술의 융합, 2018, 4(3), , pp.241-246 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKuHBBQ4AYjClC-DQlpLGd2MckDRpDwKVIu0WJE6OpqJVKd-GANLEbl12QkFj5BNwQ0r4HH2PhO_DspGnKQCpcIufFfc_2s977vVf_QegheKGcu6VvZ1nhQoBCS5uLrLAl41IJSX0qzWqL5_7eS7p_wA56vR-dVUtHs9yRb_-4r-R_tAo00KveJfsPmm2ZAgHKoF94gobhuZaOcRLhMMYRx0mMRYKFu2tKg4bEI12uKZzW34BKcTLAgkG5JnGAk6Y6gcKuZhoRHDHzDTi4XQDbEQk8BBbALNSvkWtYcBy6jUTBFxI1LyMxFFqlFFBtN8FreDLdjsS0rmlzK7pJSvR5uySunkZGMjA11UEsSFqzdWGwGIWBlrwizVhFgBjUdkl93rtTdmn-iiWuz9NqnLpX5zkv-YsADJ6-CzuOh3qZH3eoQ5z2p93DuX9zmivHc4_kYfpqko6mKQQhT1KiYzDuX0FXPYhd9H0iz94lCyPn6TQeW_617RGqT3HsL9_NNaytkaQ0oEwsjTDA88AX5lrRdiiazWC6M48udQWiLh2KHAJ4Gk9VBzwNN9H1JuqxwnoK30C90eQmwhdfz6svp1Y1P68-zKv5iVWdnfz8eGZVn46r98fWxbfv1efTW2j4OBnGe3Zza4c98qlvEyZUkcsMWkrLvFAFKRnt9_MMfAvjHOiAiSmThEgP4L1iQRDkSunUhGQS0PtttDGejMs7yBKCKj9QrhR6R7SAIXULJoOc-aqvwMBsoR3Ts3RcvHmd7odPX-h-A96C4YdR8vgWegBdNur5u5rurlPpHrq2nObbaGM2PSrvAxqd5TtGu78AWKtghQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EB%AC%B8%EC%9E%90+%EC%9D%B8%EC%8B%9D%EC%9D%84+%EC%9C%84%ED%95%9C+%EC%98%81%EC%83%81+%EB%B3%B5%EC%9B%90&rft.jtitle=%EB%AC%B8%ED%99%94%EA%B8%B0%EC%88%A0%EC%9D%98+%EC%9C%B5%ED%95%A9%2C+4%283%29&rft.au=%EB%A5%98%EC%84%9D%EC%9B%90&rft.date=2018-08-01&rft.pub=%EA%B5%AD%EC%A0%9C%EB%AC%B8%ED%99%94%EA%B8%B0%EC%88%A0%EC%A7%84%ED%9D%A5%EC%9B%90&rft.issn=2384-0358&rft.eissn=2384-0366&rft.spage=241&rft.epage=246&rft_id=info:doi/10.17703%2FJCCT.2018.4.3.241&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_3758586 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2384-0358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2384-0358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2384-0358&client=summon |