전기화학 열전지의 연구 개발 동향

Most of low-grad heat (< $200^{\circ}C$) generated from industrial process and human body, is abandoned as waste heat. To harvest the waste heat, the thermoelectrics (TE) technology has been widely investigated so far. However, TE suffers from poor performance and high material cost. As an altern...

Full description

Saved in:
Bibliographic Details
Published in전기화학회지 Vol. 22; no. 3; pp. 79 - 86
Main Authors 강준식, 김경구, 이호춘, Kang, Junsik, Kim, Kyunggu, Lee, Hochun
Format Journal Article
LanguageKorean
Published 한국전기화학회 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most of low-grad heat (< $200^{\circ}C$) generated from industrial process and human body, is abandoned as waste heat. To harvest the waste heat, the thermoelectrics (TE) technology has been widely investigated so far. However, TE suffers from poor performance and high material cost. As an alternative to the TE device, the thermoelectrical cell (TEC) is gaining growing attention these days. The TEC features several advantages such as high Seebeck coefficient, low cost and design flexibility compared to TE, but its commercial viability was limited by its low heat-to-electricity conversion efficiency. However, recent reports have demonstrated that the performance of TEC can be markedly improved by employing novel electrode/electrolyte materials and by optimizing cell design. This article summarizes the recent progress of TECs in terms of the redox couples, electrolyte solvents and additives, electrode materials and cell design. 중저온 (<$200^{\circ}C$) 폐열은 중요한 청정 에너지원이다. 폐열 활용 방안 중 가장 대표적인 것은 열전기술이나, 최근 전기화학 열전지가 열전소자의 대안으로 주목받고 있다. 전기화학 열전지의 기전력은 산화/환원 전극 전위의 온도 의존성에 의해 발생하며, 출력 특성은 전기화학 반응에 수반되는 동역학과 물질 이동 과전압에 의해 결정된다. 전기화학 열전지는 열전소자보다 비용 및 설계 유연성이 장점이지만, 열전소자에 비해 낮은 열-전기 변환 효율로 인해 응용 범위가 제한되어왔다. 하지만 최근 새로운 전해질과 전극을 적용하여 전기화학 열전지의 성능을 크게 향상할 수 있음이 보고되고 있다. 이 총설은 전기화학 열전지용 산화/환원쌍, 수계/비수계 전해질과 첨가제, 전극 물질 및 전지 설계 측면에서 최근 연구 동향을 소개한다.
AbstractList 중저온 (<200oC) 폐열은 중요한 청정 에너지원이다. 폐열 활용 방안 중 가장 대표적인 것은 열전기술이나, 최근 전기화학 열전지가 열전소자의 대안으로 주목받고 있다. 전기화학 열전지의 기전력은 산화/환원 전극 전위의 온도 의존성에 의해 발생하며, 출력 특성은 전기화학 반응에 수반되는 동역학과 물질 이동 과전압에 의해 결정된다. 전기화학 열전지는 열전소자보다 비용 및 설계 유연성이 장점이지만, 열전소자에 비해 낮은 열-전기 변환 효율로 인해 응용 범위가 제한되어왔다. 하지만 최근 새로운 전해질과 전극을 적용하여 전기화학 열전지의 성능을 크게 향상할 수있음이 보고되고 있다. 이 총설은 전기화학 열전지용 산화/환원쌍, 수계/비수계 전해질과 첨가제, 전극 물질 및 전지 설계 측면에서 최근 연구 동향을 소개한다. Most of low-grad heat (< 200oC) generated from industrial process and human body, is abandoned as waste heat. To harvest the waste heat, the thermoelectrics (TE) technology has been widely investigated so far. However, TE suffers from poor performance and high material cost. As an alternative to the TE device, the thermoelectrical cell (TEC) is gaining growing attention these days. The TEC features several advantages such as high Seebeck coefficient, low cost and design flexibility compared to TE, but its commercial viability was limited by its low heatto- electricity conversion efficiency. However, recent reports have demonstrated that the performance of TEC can be markedly improved by employing novel electrode/electrolyte materials and by optimizing cell design. This article summarizes the recent progress of TECs in terms of the redox couples, electrolyte solvents and additives, electrode materials and cell design. KCI Citation Count: 0
Most of low-grad heat (< $200^{\circ}C$) generated from industrial process and human body, is abandoned as waste heat. To harvest the waste heat, the thermoelectrics (TE) technology has been widely investigated so far. However, TE suffers from poor performance and high material cost. As an alternative to the TE device, the thermoelectrical cell (TEC) is gaining growing attention these days. The TEC features several advantages such as high Seebeck coefficient, low cost and design flexibility compared to TE, but its commercial viability was limited by its low heat-to-electricity conversion efficiency. However, recent reports have demonstrated that the performance of TEC can be markedly improved by employing novel electrode/electrolyte materials and by optimizing cell design. This article summarizes the recent progress of TECs in terms of the redox couples, electrolyte solvents and additives, electrode materials and cell design. 중저온 (<$200^{\circ}C$) 폐열은 중요한 청정 에너지원이다. 폐열 활용 방안 중 가장 대표적인 것은 열전기술이나, 최근 전기화학 열전지가 열전소자의 대안으로 주목받고 있다. 전기화학 열전지의 기전력은 산화/환원 전극 전위의 온도 의존성에 의해 발생하며, 출력 특성은 전기화학 반응에 수반되는 동역학과 물질 이동 과전압에 의해 결정된다. 전기화학 열전지는 열전소자보다 비용 및 설계 유연성이 장점이지만, 열전소자에 비해 낮은 열-전기 변환 효율로 인해 응용 범위가 제한되어왔다. 하지만 최근 새로운 전해질과 전극을 적용하여 전기화학 열전지의 성능을 크게 향상할 수 있음이 보고되고 있다. 이 총설은 전기화학 열전지용 산화/환원쌍, 수계/비수계 전해질과 첨가제, 전극 물질 및 전지 설계 측면에서 최근 연구 동향을 소개한다.
Author 이호춘
Kim, Kyunggu
Lee, Hochun
김경구
Kang, Junsik
강준식
Author_xml – sequence: 1
  fullname: 강준식
– sequence: 2
  fullname: 김경구
– sequence: 3
  fullname: 이호춘
– sequence: 4
  fullname: Kang, Junsik
– sequence: 5
  fullname: Kim, Kyunggu
– sequence: 6
  fullname: Lee, Hochun
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002495092$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotkM1Kw0AcxBepYKx9AG-5ePCQuP__ZrO7x1Kq9gMK2vuSTwkpCTQ-gAfvXtRaqOBFvHjIQcFnStN3MLWehoEfM8McklaWZxEhx0BtjqjOhqP-tY0UlI1oM1uoPWIgSmkpSmmLGNBAFijGD0inKBKfUgDe4MIgdv12X_2Um-Xj5mlp1ouvxtcfd_XrS2PK6vvTrMrVulyZ64fl5vn9iOzH3qyIOv_aJtPz_rR3aY0nF4Ned2ylrgOWUtKPwlgyJw4hCuKmPgxoFPngIg8kBRRCCuHxgHuqWYOO41NPAoQMA8mAtcnpLjabxzoNEp17yZ_e5Dqd6-7VdKBdioLzLXuyY9OkuE10FhYzPeyOJts_kDvcAcaQK_YLgydg3w
ContentType Journal Article
DBID JDI
ACYCR
DEWEY 541.37
DOI 10.5229/JKES.2019.22.3.79
DatabaseName KoreaScience (Open Access)
Korean Citation Index (Open Access)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate R&D Trends of Thermoelectrochemical Cells
EISSN 2288-9000
EndPage 86
ExternalDocumentID oai_kci_go_kr_ARTI_6027551
JAKO201925454133259
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
JDI
ACYCR
M~E
ID FETCH-LOGICAL-k641-998bedf834fd1ecf229dc0eeb1625c801277877a5c5a9b00244b0a811d32c8313
ISSN 1229-1935
IngestDate Tue Nov 21 21:17:21 EST 2023
Fri Dec 22 11:59:25 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Thermoelectrochemical Cell
Thermal Energy Harvesting, Waste Heat
Seebeck
Redox Couple
Thermogalvanic Cell
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k641-998bedf834fd1ecf229dc0eeb1625c801277877a5c5a9b00244b0a811d32c8313
Notes KISTI1.1003/JNL.JAKO201925454133259
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201925454133259&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6027551
kisti_ndsl_JAKO201925454133259
PublicationCentury 2000
PublicationDate 2019-08
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08
PublicationDecade 2010
PublicationTitle 전기화학회지
PublicationTitleAlternate Journal of the Korean Electrochemical Society
PublicationYear 2019
Publisher 한국전기화학회
Publisher_xml – name: 한국전기화학회
SSID ssib001150197
ssib036278841
ssib044745954
ssib053377415
Score 2.1130624
Snippet Most of low-grad heat (< $200^{\circ}C$) generated from industrial process and human body, is abandoned as waste heat. To harvest the waste heat, the...
중저온 (<200oC) 폐열은 중요한 청정 에너지원이다. 폐열 활용 방안 중 가장 대표적인 것은 열전기술이나, 최근 전기화학 열전지가 열전소자의 대안으로 주목받고 있다. 전기화학 열전지의 기전력은 산화/환원 전극 전위의 온도 의존성에 의해 발생하며, 출력 특성은 전기화학 반응에...
SourceID nrf
kisti
SourceType Open Website
Open Access Repository
StartPage 79
SubjectTerms 화학
Title 전기화학 열전지의 연구 개발 동향
URI http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201925454133259&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002495092
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 전기화학회지, 2019, 22(3), , pp.79-86
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGuHBBIJgYH1OE8KlKSBw7sY9Jmml0Ghwo0m5RPtHUqZVKd9lh4sCdC1-VhsQFceHQA0j8TV37P_DsNE0GQ-q4RC_Oi_3snxP_nj8RemSlPHMEdXU3z2KdJvApxgUAkhEnoblZ0EJNHt976uy8oJ19tr92ZaMxa-lolBjp8YXrSv4HVQgDXOUq2Usgu4wUAkAGfOEKCMN1JYxxGGDPxJzi0MM-x76JwzYWAguqBAZySyoJF_u0oQ2CK-c4yEegx5dKpoqJYS9oKcnEIsChXwotKfFtmYCM3cEea3LbVaxRgod5UNsAGBMCPLfZ5VulzZQaXZjKfbD2nIpQT0Ag2G8vTa9VVPb8MnkubYIQ38HlidRVZ4dcX8WbnR2VtUEVY_tSWWv85wkROnDXsphyFUYIVC95hmrjf14edFMxA-eiNgcIrNyytbMbPpczBYVBiGEb1YvN_b3_aHfP7fDdSw-il4OoN4zAj3kSOXI0We4McJW4gsmpqnsnYU1zgcU3Rn-Bg7ic17SWUpcyoQ4AXOazHNCXtj7-y1Lwy6SzcgD0qj8sGvSqewNdX_hFmldW8ptorTe4hYzZlzfTX5P5-N38_VibffwB97Nvr2efP8HNZPrzuzadnJ5NTrWzt-P5h6-3UXc77AY7-uKAD73nUEsHTz_Js4LbtMisPC3AuCw1c2AP4JSnkjq50Jy4MUtZLBSbpIkZc8vKbJJy27I30Hp_0M_vIA14beIQGgPhzCkUSCyKhPIcCKAtLOCsm2hLZTHqZ68Oo463-0wWAAH3AUicTZjYRA8h7wqGf8NxdxWle-haXXPvo_XR8Ch_AMR1lGwpFH8Dok1vPA
link.rule.ids 230,315,786,790,891,27955,27956
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EC%A0%84%EA%B8%B0%ED%99%94%ED%95%99+%EC%97%B4%EC%A0%84%EC%A7%80%EC%9D%98+%EC%97%B0%EA%B5%AC+%EA%B0%9C%EB%B0%9C+%EB%8F%99%ED%96%A5&rft.jtitle=%EC%A0%84%EA%B8%B0%ED%99%94%ED%95%99%ED%9A%8C%EC%A7%80%2C+22%283%29&rft.au=%EA%B0%95%EC%A4%80%EC%8B%9D&rft.au=%EA%B9%80%EA%B2%BD%EA%B5%AC&rft.au=%EC%9D%B4%ED%98%B8%EC%B6%98&rft.date=2019-08-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%84%EA%B8%B0%ED%99%94%ED%95%99%ED%9A%8C&rft.issn=1229-1935&rft.eissn=2288-9000&rft.spage=79&rft.epage=86&rft_id=info:doi/10.5229%2FJKES.2019.22.3.79&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_6027551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-1935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-1935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-1935&client=summon