독립인 확률변수들의 Tail 합의 극한 성질에 대하여

For the almost co티am convergent series $S_n$ of independent random variables, by investigating the limiting behavior of the tail series, $T_n=S-S_{n-1}=\sum_{i=n}^{\infty}X_i$, the rate of convergence of the series $S_n$ to a random variable S is studied in this paper. More specifically, the equival...

Full description

Saved in:
Bibliographic Details
Published in한국콘텐츠학회 논문지, 6(4) Vol. 6; no. 4; pp. 63 - 68
Main Authors 장윤식, 남은우, Jang Yoon-Sik, Nam Eun-Woo
Format Journal Article
LanguageKorean
Published 한국콘텐츠학회 01.04.2006
Subjects
Online AccessGet full text
ISSN1598-4877
2508-6723

Cover

Abstract For the almost co티am convergent series $S_n$ of independent random variables, by investigating the limiting behavior of the tail series, $T_n=S-S_{n-1}=\sum_{i=n}^{\infty}X_i$, the rate of convergence of the series $S_n$ to a random variable S is studied in this paper. More specifically, the equivalence between the tail series weak law of large numbers and a limit law is established for a quasi-monotone decreasing sequence, thereby extending a result of Previous work to the wider class of the norming constants. 본 연구에서는, 서로 독립인 확률변수들의 합 $S_n$이 수렴하는 경우에, 확률변수들의 Tail 합 $T_n=S-S_{n-1}=\sum_{i=n}^{\infty}X_i$의 극한 성질을 연구함으로써, $S_n$이 하나의 확률변수 S로 수렴하는 속도를 연구한다. 좀 더 구체적으로 말하자면, 유사-단조감소(Quasi-monotone decreasing)하는 상수(Norming constants)의 수열에 대하여, 확률변수들의 Tail 합에 대한 약대수법칙과 하나의 수렴법칙이 동등함을 정리로 기술하고 증명하여, 기존의 연구 결과를 더 넓은 부류의 상수들의 경우에 적용할 수 있도록 확장한다.
AbstractList 본 연구에서는, 서로 독립인 확률변수들의 합 이 수렴하는 경우에, 확률변수들의 Tail 합 의 극한 성질을 연구함으로써, 이 하나의 확률변수 로 수렴하는 속도를 연구한다. 좀 더 구체적으로 말하자면, 유사-단조감소(Quasi-monotone decreasing)하는 상수(Norming constants)의 수열에 대하여 , 확률변수들의 Tail 합에 대한 약대수법칙과 하나의 수렴법칙이 동등함을 정리로 기술하고 증명하여, 기존의 연구 결과를 더 넓은 부류의 상수들의 경우에 적용할 수 있도록 확장한다. For the almost certain convergent series of independent random variables, by investigating the limiting behavior of the tail series, the rate of convergence of the series to a random variable is studied in this paper. More specifically, the equivalence between the tail series weak law of large numbers and a limit law is established for a quasi-monotone decreasing sequence, thereby extending a result of previous work to the wider class of the norming constants. KCI Citation Count: 2
For the almost co티am convergent series $S_n$ of independent random variables, by investigating the limiting behavior of the tail series, $T_n=S-S_{n-1}=\sum_{i=n}^{\infty}X_i$, the rate of convergence of the series $S_n$ to a random variable S is studied in this paper. More specifically, the equivalence between the tail series weak law of large numbers and a limit law is established for a quasi-monotone decreasing sequence, thereby extending a result of Previous work to the wider class of the norming constants. 본 연구에서는, 서로 독립인 확률변수들의 합 $S_n$이 수렴하는 경우에, 확률변수들의 Tail 합 $T_n=S-S_{n-1}=\sum_{i=n}^{\infty}X_i$의 극한 성질을 연구함으로써, $S_n$이 하나의 확률변수 S로 수렴하는 속도를 연구한다. 좀 더 구체적으로 말하자면, 유사-단조감소(Quasi-monotone decreasing)하는 상수(Norming constants)의 수열에 대하여, 확률변수들의 Tail 합에 대한 약대수법칙과 하나의 수렴법칙이 동등함을 정리로 기술하고 증명하여, 기존의 연구 결과를 더 넓은 부류의 상수들의 경우에 적용할 수 있도록 확장한다.
Author 장윤식
남은우
Jang Yoon-Sik
Nam Eun-Woo
Author_xml – sequence: 1
  fullname: 장윤식
– sequence: 2
  fullname: 남은우
– sequence: 3
  fullname: Jang Yoon-Sik
– sequence: 4
  fullname: Nam Eun-Woo
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001006995$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotj8tKw0AARQepYK39h2wEN4F5ZR7LUny0Fgra_ZBMZiSkpND4AV0odCEoSGgFCy58ILgRF-rCHzKTf7BaV-cuDgfuJqhlo8ysgToOoPAZx6QG6iiQwqeC8w3QzPMkgjAgkCGG66BdXp6Xj19u8eFVN0X5cFe-Tdx0Xl7fu8XcG4TJ0KuK59_9_f5ZFbeeO3t1T1M3u_LKi0lVzN3sZQus23CYm-Y_G-B4b3fQPvB7_f1Ou9XzU0agH5BIGI4Z1TIKNeLQRpzTyASWGSSJtZrFsYFSxxRjJhnkWCJqkRbcQB2RBthZVbOxValO1ChM_ngyUulYtY4GHSUJCyhcqtsrNU3y00RlcT5U3dZhH8Pla8GRgBQRwskPTvpn4A
ContentType Journal Article
DBID JDI
ACYCR
DEWEY 005.7
DatabaseName KoreaScience
Korean Citation Index
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Limiting Behavior of Tail Series of Independent Random Variable
EISSN 2508-6723
EndPage 68
ExternalDocumentID oai_kci_go_kr_ARTI_936540
JAKO200618718041337
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
JDI
ACYCR
M~E
ID FETCH-LOGICAL-k630-53b8e7264c9bac170fb774be5f6e193ffc6dde09cd422696072914f1c87e0cb3
ISSN 1598-4877
IngestDate Tue Nov 21 21:45:24 EST 2023
Fri Dec 22 11:58:39 EST 2023
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 4
Keywords Almost Certain
Tail
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k630-53b8e7264c9bac170fb774be5f6e193ffc6dde09cd422696072914f1c87e0cb3
Notes KISTI1.1003/JNL.JAKO200618718041337
G704-001475.2006.6.4.004
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO200618718041337&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_936540
kisti_ndsl_JAKO200618718041337
PublicationCentury 2000
PublicationDate 2006-04
PublicationDateYYYYMMDD 2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-04
PublicationDecade 2000
PublicationTitle 한국콘텐츠학회 논문지, 6(4)
PublicationTitleAlternate The Journal of the Korea Contents Association
PublicationYear 2006
Publisher 한국콘텐츠학회
Publisher_xml – name: 한국콘텐츠학회
SSID ssib005306162
ssib036279156
ssib001107260
ssib053377518
ssib030194663
ssib044738273
Score 1.3571296
Snippet For the almost co티am convergent series $S_n$ of independent random variables, by investigating the limiting behavior of the tail series,...
본 연구에서는, 서로 독립인 확률변수들의 합 이 수렴하는 경우에, 확률변수들의 Tail 합 의 극한 성질을 연구함으로써, 이 하나의 확률변수 로 수렴하는 속도를 연구한다. 좀 더 구체적으로 말하자면, 유사-단조감소(Quasi-monotone decreasing)하는 상수(Norming...
SourceID nrf
kisti
SourceType Open Website
Open Access Repository
StartPage 63
SubjectTerms 학제간연구
Title 독립인 확률변수들의 Tail 합의 극한 성질에 대하여
URI http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO200618718041337&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001006995
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 한국콘텐츠학회 논문지, 2006, 6(4), , pp.63-68
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxQxFA9tT15EUbHalhHMaRmZmWRmkuN8lVqpHlyht2FmNiPrll1YtxcP0oNCD4KCLF3Bggc_ELyIB_XgP-TM_g--ZKa706JQ9RIeLy8veXkheb-QD4SuW2aS57mwdFhOXJ26FtNTkls65cwSVmoIrm69b912Nu7RzW17e2FxtXFqaXeU3sge_fZeyb94FXjgV3lL9i88O1MKDKDBv5CChyE9lY9x5GO2jpktCc_BfoijAPMQ-6yFoxBzjnmVZ2PPkIRP5NEGEGIMcyY5nGCP1sU4a7WT7k5VForwOR9HHvZd7PM6jwctpYZi35SE50qVUtzF3GiplgWqrkr8KK9-6vHBkQG1MqUealQG-KGSD6VhXLXWZ6r9lXDVBA_0V9XY2A-UkUquboshx44D4TNt7HUocQt7rLar6gpQ5RtzEWBEssMkEdR9w6CfwpMbJLS5QfKfljTXBi73XutfZ4TiQQDJdMe1SGMNqCfsKpqo_gw6_s73ifX32Evfvawb3x_EvWEMeOZmzIkDIfUiWiSmnMS3HkfzWBeAu9XAtjaAP3P-9iNM3PLrgNnkC4GKy835w0mUuoRZ6gTGzDAAaBK1dCHO6g_zRpzVPofO1gBJ86rRfh4t9AYXUFA8f1q8_1EeftOmr8bFuzfFl71yf1K8fFseTjQ5ZrXp-KOkf379Ph2_1sonn8sP--XBC614tjcdT8qDTxfR3fWoHWzo9fcfes8hhm6TlAmwkGY8TTLTNfIUoEoq7NwRgDryPHNgaTZ41pGXwQGIA0w0aW5mzBVGlpJLaKk_6IvLSOMmSQAnCIfILRhmJzRxO1SQnAonY4wsozVldtzvPNyJN71bd-QwMhmEbQbEeMRdRtegP5Rv_uijK6eQuYrOzAfoCloaDXfFKsS0o3RN-fYXJy56nw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EB%8F%85%EB%A6%BD%EC%9D%B8+%ED%99%95%EB%A5%A0%EB%B3%80%EC%88%98%EB%93%A4%EC%9D%98+Tail+%ED%95%A9%EC%9D%98+%EA%B7%B9%ED%95%9C+%EC%84%B1%EC%A7%88%EC%97%90+%EB%8C%80%ED%95%98%EC%97%AC&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%BD%98%ED%85%90%EC%B8%A0%ED%95%99%ED%9A%8C+%EB%85%BC%EB%AC%B8%EC%A7%80%2C+6%284%29&rft.au=%EB%82%A8%EC%9D%80%EC%9A%B0&rft.au=%EC%9E%A5%EC%9C%A4%EC%8B%9D&rft.date=2006-04-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%BD%98%ED%85%90%EC%B8%A0%ED%95%99%ED%9A%8C&rft.issn=1598-4877&rft.eissn=2508-6723&rft.spage=63&rft.epage=68&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_936540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-4877&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-4877&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-4877&client=summon