키넥트 깊이 정보와 컨볼루션 신경망을 이용한 개별 돼지의 탐지
Aggression among pigs adversely affects economic returns and animal welfare in intensive pigsties. Recently, some studies have applied information technology to a livestock management system to minimize the damage resulting from such anomalies. Nonetheless, detecting each pig in a crowed pigsty is s...
Saved in:
Published in | 한국콘텐츠학회논문지 Vol. 18; no. 2; pp. 1 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Korean |
Published |
한국콘텐츠학회
2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1598-4877 2508-6723 |
Cover
Abstract | Aggression among pigs adversely affects economic returns and animal welfare in intensive pigsties. Recently, some studies have applied information technology to a livestock management system to minimize the damage resulting from such anomalies. Nonetheless, detecting each pig in a crowed pigsty is still challenging problem. In this paper, we propose a new Kinect camera and deep learning-based monitoring system for the detection of the individual pigs. The proposed system is characterized as follows. 1) The background subtraction method and depth-threshold are used to detect only standing-pigs in the Kinect-depth image. 2) The standing-pigs are detected by using YOLO (You Only Look Once) which is the fastest and most accurate model in deep learning algorithms. Our experimental results show that this method is effective for detecting individual pigs in real time in terms of both cost-effectiveness (using a low-cost Kinect depth sensor) and accuracy (average 99.40% detection accuracies). 혼잡한 돈방에서 사육되는 이유자돈들의 공격적인 이상행동들은 축산농가의 경제적 손실을 야기할 뿐만 아니라 동물복지입장에서도 바람직하지 않다. 이러한 문제점의 해결책으로, 최근 IT기반의 연구들이 소개되고 있으나 혼잡한 돈방에서의 돼지 객체 탐지는 여전히 도전적인 문제로 알려져 있다. 본 논문에서는 개별 돼지의 탐지를 위한 키넥트 카메라와 딥러닝 기반의 새로운 모니터링 시스템을 제안한다. 제안된 시스템은 다음과 같다. 1) 키넥트 카메라로부터 취득한 깊이 영상에서 배경 차영상 기법과 깊이 임계값을 이용하여 서있는 돼지만을 탐지한다, 2) 딥러닝 알고리즘 중 최근 가장 빠르고 높은 정확도를 보이는 YOLO(You Only Look Once)를 이용하여 서있는 돼지들을 탐지한다. 본 연구의 실험 결과에 의하면, 제안된 시스템은 경제적인 비용(저가의 키넥트 센서)과 시스템 정확도(평균 99.40% 객체 검출율과 탐지 정확도)로 개별 돼지 객체들을 실시간으로 탐지할 수 있음을 실험적으로 확인하였다. |
---|---|
AbstractList | Aggression among pigs adversely affects economic returns and animal welfare in intensive pigsties. Recently, some studies have applied information technology to a livestock management system to minimize the damage resulting from such anomalies. Nonetheless, detecting each pig in a crowed pigsty is still challenging problem. In this paper, we propose a new Kinect camera and deep learning-based monitoring system for the detection of the individual pigs. The proposed system is characterized as follows. 1) The background subtraction method and depth-threshold are used to detect only standing-pigs in the Kinect-depth image. 2) The standing-pigs are detected by using YOLO (You Only Look Once) which is the fastest and most accurate model in deep learning algorithms. Our experimental results show that this method is effective for detecting individual pigs in real time in terms of both cost-effectiveness (using a low-cost Kinect depth sensor) and accuracy (average 99.40% detection accuracies). 혼잡한 돈방에서 사육되는 이유자돈들의 공격적인 이상행동들은 축산농가의 경제적 손실을 야기할 뿐만 아니라 동물복지입장에서도 바람직하지 않다. 이러한 문제점의 해결책으로, 최근 IT기반의 연구들이 소개되고 있으나 혼잡한 돈방에서의 돼지 객체 탐지는 여전히 도전적인 문제로 알려져 있다. 본 논문에서는 개별 돼지의 탐지를 위한 키넥트 카메라와 딥러닝 기반의 새로운 모니터링 시스템을 제안한다. 제안된 시스템은 다음과 같다. 1) 키넥트 카메라로부터 취득한 깊이 영상에서 배경 차영상 기법과 깊이 임계값을 이용하여 서있는 돼지만을 탐지한다, 2) 딥러닝 알고리즘 중 최근 가장 빠르고 높은 정확도를 보이는 YOLO(You Only Look Once)를 이용하여 서있는 돼지들을 탐지한다. 본 연구의 실험 결과에 의하면, 제안된 시스템은 경제적인 비용(저가의 키넥트 센서)과 시스템 정확도(평균 99.40% 객체 검출율과 탐지 정확도)로 개별 돼지 객체들을 실시간으로 탐지할 수 있음을 실험적으로 확인하였다. |
Author | 박대희(Daihee Park) 이준희(Junhee Lee) 이종욱(Jonguk Lee) 정용화(Yongwha Chung) |
Author_xml | – sequence: 1 fullname: 이준희(Junhee Lee) – sequence: 2 fullname: 이종욱(Jonguk Lee) – sequence: 3 fullname: 박대희(Daihee Park) – sequence: 4 fullname: 정용화(Yongwha Chung) |
BookMark | eNpFjj1Lw0AAhg-pYK39D7c4Bu4jl9yNpdbPYpfiGs4kB6E1SqODW9G61EGXQpUGCiqtm9gOivUP9S7_wYCC0_sMDw_vOijEp3G4AoqEIW45LqEFUMRMcMvmrrsGykkSHSPEKHKwQ4rgKLt61r2XrP8Bl599k86hGQ_0bG4eutB8TfVsoZ-m5mYIze14-f6tJ6lJezD3zONrNhjB5dtIz3pQ3y3MpGvSIcyu73PaAKtKtpOw_Lcl0NyuNau7Vr2xs1et1K2Wk98LKQ5sqYTyJSXCdWzhKB_5LmecBBIRJXmoJCMUCSU48xHCChFMkK0k5orREtj8zbai5Dzy4iBpe_uVgwZBmGNEmGMzIij-9-KLTnQSBpH0znKQnUvvsLFVQy4VeZ_THwOVdLA |
ContentType | Journal Article |
DBID | DBRKI TDB JDI |
DEWEY | 005.7 |
DatabaseName | DBPIA - 디비피아 누리미디어 DBpia [Open Access] KoreaScience |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitle_FL | Individual Pig Detection Using Kinect Depth Information and Convolutional Neural Network |
EISSN | 2508-6723 |
EndPage | 10 |
ExternalDocumentID | JAKO201810256452931 NODE07399858 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB JDI |
ID | FETCH-LOGICAL-k608-e31d4af9fca32976496fc0c78582da02fa8efa52309f985c001f021204fa18f53 |
ISSN | 1598-4877 |
IngestDate | Fri Dec 22 12:03:42 EST 2023 Thu Feb 06 13:25:24 EST 2025 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Keywords | YOLO Convolutional Neural Network Individual Pig Detection 키넥트 깊이정보 욜로 컨볼루션 신경망 개별 돼지 탐지 Kinect Depth Information |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k608-e31d4af9fca32976496fc0c78582da02fa8efa52309f985c001f021204fa18f53 |
Notes | KISTI1.1003/JNL.JAKO201810256452931 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201810256452931&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 10 |
ParticipantIDs | kisti_ndsl_JAKO201810256452931 nurimedia_primary_NODE07399858 |
PublicationCentury | 2000 |
PublicationDate | 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationTitle | 한국콘텐츠학회논문지 |
PublicationTitleAlternate | The Journal of the Korea Contents Association |
PublicationYear | 2018 |
Publisher | 한국콘텐츠학회 |
Publisher_xml | – name: 한국콘텐츠학회 |
SSID | ssib005306162 ssib036279156 ssib001107260 ssib053377518 ssib030194663 ssib044738273 |
Score | 1.6435341 |
Snippet | Aggression among pigs adversely affects economic returns and animal welfare in intensive pigsties. Recently, some studies have applied information technology... |
SourceID | kisti nurimedia |
SourceType | Open Access Repository Publisher |
StartPage | 1 |
Title | 키넥트 깊이 정보와 컨볼루션 신경망을 이용한 개별 돼지의 탐지 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07399858 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201810256452931&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RANNRe1IMoKn6WHJxTWUkmM5uZY5JNKRVbD1XqacnHxEplK9pF8CBF66Ue9FKo0oWCSutNbA-K9eqPabL_wfcmcZulgl-X7OzM-5r3Mpn35tMwrsQicpXkSYMrK2owqaBJUaEaKWWKSjtWaYz7na9PNydvsqk5Pjdy5Htt1VJ3Kb6aPP7lvpJ_sSrkgV1xl-xfWHZAFDIgDfaFJ1gYnn9kYxK2iKDEYyT0iWDE4zrHI74YJyH8SPwTBkS2iM_GMeVZRHIE9x3I0mUAZOky3yee-FkWYMJzdE5ABCdSaCDhIw0kTonf0kAu0i-5iJKL5qcTHvEkCgVMZVAKBRIEFRcNDqJPaH4BkhJWRUDzA4oOkdagrO5LD8hqqpx4WggfMTUirxB9oSUugUthPCK0CABTVVSDDXGBt3CoKqBlUZJpITgVU93OvMINUao2nDKMQpFDqQbfRpTFzp3uwiEUXytFmwXkGubSiu4ilxt6TfsQm8qUdSVLIhng3AY2j-aj8WBef8plfWin6oewGf6nAuv9mcTx4uqmHKXzwOkVjaZbbvM-3AkOxiLKHs2uuUbVAuTh88mnZ1ohTvdKwXHPPSZwBe2T8MArty2X1qJwDmGqfXBKJXQxeMnBoJsAl8qV9sERT4y5jqh52RCguDhZqE9CrqoHoSXGW3ePG0c7XbwXAz6uNT9x9qRxogrwTK9sraeMkYXF08at_tN3-cr7_upnc__LatHbNYvNtXxnt3i9bBZft_OdvfztdvF83SxebO5_-pZv9YreiglwxZsP_bUNc__jRr6zYuYv94qt5aK3bvafvYLUGWN2IpwNJhvVjSaNhSYoXTl2yqJMZknkUIgDmGxmiZW4oDmaRhbNIqGyCOdpZAbqTEB1GV7BYLEsskXGnbPGaGexo84ZpnIVjXmW8jijLJEyslKueKpoElkxdbLzxphWSLuTPrzXnvKuzeALZmOEg0stHBsABppq3y9PtmnXbXnhdwAXjWNIsxyPvGSMLj3oqsvgoS_FY9r-PwCxL7kR |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%ED%82%A4%EB%84%A5%ED%8A%B8+%EA%B9%8A%EC%9D%B4+%EC%A0%95%EB%B3%B4%EC%99%80+%EC%BB%A8%EB%B3%BC%EB%A3%A8%EC%85%98+%EC%8B%A0%EA%B2%BD%EB%A7%9D%EC%9D%84+%EC%9D%B4%EC%9A%A9%ED%95%9C+%EA%B0%9C%EB%B3%84+%EB%8F%BC%EC%A7%80%EC%9D%98+%ED%83%90%EC%A7%80&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%BD%98%ED%85%90%EC%B8%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80&rft.au=%EC%9D%B4%EC%A4%80%ED%9D%AC%28Junhee+Lee%29&rft.au=%EC%9D%B4%EC%A2%85%EC%9A%B1%28Jonguk+Lee%29&rft.au=%EB%B0%95%EB%8C%80%ED%9D%AC%28Daihee+Park%29&rft.au=%EC%A0%95%EC%9A%A9%ED%99%94%28Yongwha+Chung%29&rft.date=2018&rft.pub=%ED%95%9C%EA%B5%AD%EC%BD%98%ED%85%90%EC%B8%A0%ED%95%99%ED%9A%8C&rft.issn=1598-4877&rft.eissn=2508-6723&rft.volume=18&rft.issue=2&rft.spage=1&rft.epage=10&rft.externalDocID=NODE07399858 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-4877&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-4877&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-4877&client=summon |