Analysis of Research Topics and Trends on COVID-19 in Korea Using Latent Dirichlet Allocation (LDA)

This study aims to identify research topics and examine the trend of Covid19-related papers on DBpia. Applying latent Dirichlet allocation (LDA), we have extracted seven research topics, each of which concerns "International Dynamics", "Technology & Security", "Psycholog...

Full description

Saved in:
Bibliographic Details
Published in韓國컴퓨터情報學會論文誌 Vol. 25; no. 12; pp. 83 - 91
Main Authors Heo, Seong-Min, Yang, Ji-Yeon
Format Journal Article
LanguageKorean
Published 한국컴퓨터정보학회 2020
Subjects
Online AccessGet full text
ISSN1598-849X
2383-9945

Cover

Abstract This study aims to identify research topics and examine the trend of Covid19-related papers on DBpia. Applying latent Dirichlet allocation (LDA), we have extracted seven research topics, each of which concerns "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", and "Religion-Related". In addition, we used the multinomial logistic model to examine the trend of research topics. We found that the papers mainly cover topics related to "International Dynamics" and "Biomedical-Related" before June 2020, but the topics have become diverse since then. In particular, topics regarding "Economic Impact", "Online Education" and "Psychological Impact" has drawn increased attention of researchers. The findings would provide a guideline for collaboration in Covid19-related research, and could serve as a reference work for active research. 본 연구에서는 DBpia에 등록된 코로나19 관련 논문을 대상으로 연구 토픽을 밝히고 연구 변화 추세를 검토한다. 잠재 디리슐레 할당(Latent Dirichlet Allocation) 알고리즘을 적용한 결과, 7개의 연구 토픽을 도출하였고, 각 토픽은 "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", "Religion-Related"에 관한 내용이었다. 또한 다범주 로짓모형을 사용하여 연구 토픽의 추세 변화를 살펴본 결과, 2020년 6월 전에는 국제적 역학관계 및 생물 의학 관련 논문이 주를 이루었다면, 이후에는 다양한 분야로 연구 주제가 확대되었다. 특히 경제적인 영향, 온라인 교육, 심리적인 영향에 관한 연구가 꾸준히 증가함을 확인할 수 있었다. 이러한 결과는 향후 코로나19 관련 공동 연구의 가이드 라인을 제시하고, 활발한 연구 활동을 위한 기초자료로 활용될 수 있을 것이다.
AbstractList This study aims to identify research topics and examine the trend of Covid19-related papers on DBpia. Applying latent Dirichlet allocation (LDA), we have extracted seven research topics, each of which concerns "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", and "Religion-Related". In addition, we used the multinomial logistic model to examine the trend of research topics. We found that the papers mainly cover topics related to "International Dynamics" and "Biomedical-Related" before June 2020, but the topics have become diverse since then. In particular, topics regarding "Economic Impact", "Online Education" and "Psychological Impact" has drawn increased attention of researchers. The findings would provide a guideline for collaboration in Covid19-related research, and could serve as a reference work for active research. 본 연구에서는 DBpia에 등록된 코로나19 관련 논문을 대상으로 연구 토픽을 밝히고 연구 변화 추세를 검토한다. 잠재 디리슐레 할당(Latent Dirichlet Allocation) 알고리즘을 적용한 결과, 7개의 연구 토픽을 도출하였고, 각 토픽은 "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", "Religion-Related"에 관한 내용이었다. 또한 다범주 로짓모형을 사용하여 연구 토픽의 추세 변화를 살펴본 결과, 2020년 6월 전에는 국제적 역학관계 및 생물 의학 관련 논문이 주를 이루었다면, 이후에는 다양한 분야로 연구 주제가 확대되었다. 특히 경제적인 영향, 온라인 교육, 심리적인 영향에 관한 연구가 꾸준히 증가함을 확인할 수 있었다. 이러한 결과는 향후 코로나19 관련 공동 연구의 가이드 라인을 제시하고, 활발한 연구 활동을 위한 기초자료로 활용될 수 있을 것이다.
Author Seong-Min Heo(허성민)
Ji-Yeon Yang(양지연)
Author_xml – sequence: 1
  fullname: Heo, Seong-Min
– sequence: 2
  fullname: Yang, Ji-Yeon
BookMark eNpFjs9LwzAcxYNMcM79D7kIeih8m19NjmWdOlcsSBVvJU1SF1bT0dTD_nsLCp7eg_d5j3eNFmEI7gItCZU0UYrxBVqmXMlEMvVxhdYx-haoIJkiXCyRyYPuz9FHPHT41UWnR3PA9XDyJmIdLK5HF-ycBryp3ndFkirsA94Po9P4LfrwiUs9uTDhwo_eHHo34bzvB6MnP3fuyiK_v0GXne6jW__pCtUP23rzlJTV426Tl8lRgEwsEGMzYSwwwltgsuNES8dsZjoh2ta2raOSOMGJBcsNqBlkupUOLCWuoyt0-zt79HHyzfy6b57zfUWAAFDGQGYqheyfC9-j_3LW6-Y0Gz2em5eq2KbAIZNE0h9_RF6V
ContentType Journal Article
DBID DBRKI
TDB
JDI
DEWEY 651.8
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
KoreaScience
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
DocumentTitle_FL LDA를 이용한 코로나 19 국내 연구토픽 및 동향 분석
EISSN 2383-9945
EndPage 91
ExternalDocumentID JAKO202003440879107
NODE10507828
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
JDI
ID FETCH-LOGICAL-k608-d02cd76cd0425b048f52a8e4d7cf66bbdbbe382e652d0d5c090424ab8e0d32ef3
ISSN 1598-849X
IngestDate Fri Dec 22 12:01:14 EST 2023
Thu Feb 06 13:08:24 EST 2025
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 12
Keywords latent Dirichlet allocation
research topic
multinomial logistic model
다범주 로짓모형
Covid19
잠재 디리슐레 할당
text mining
연구 토픽
코로나19
텍스트 마이닝
19
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k608-d02cd76cd0425b048f52a8e4d7cf66bbdbbe382e652d0d5c090424ab8e0d32ef3
Notes KISTI1.1003/JNL.JAKO202003440879107
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202003440879107&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 9
ParticipantIDs kisti_ndsl_JAKO202003440879107
nurimedia_primary_NODE10507828
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle 韓國컴퓨터情報學會論文誌
PublicationTitleAlternate Journal of the Korea Society of Computer and Information
PublicationYear 2020
Publisher 한국컴퓨터정보학회
Publisher_xml – name: 한국컴퓨터정보학회
SSID ssib036279256
ssib001107257
ssib044738270
ssib012146333
ssib008451689
ssib053377514
Score 1.7083333
Snippet This study aims to identify research topics and examine the trend of Covid19-related papers on DBpia. Applying latent Dirichlet allocation (LDA), we have...
SourceID kisti
nurimedia
SourceType Open Access Repository
Publisher
StartPage 83
Title Analysis of Research Topics and Trends on COVID-19 in Korea Using Latent Dirichlet Allocation (LDA)
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10507828
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202003440879107&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaMDH0MRZ_oM-BQAi0CFRRFSeQo2TJcJ46HukUyGSZFpUICKSjspUOn_vAeRT2cIkAfi0CcKELkfTp-PJF3CL2linHFtPIKHXKP-9rAN6dhqaJ87StqCtrE2V6cRrPPfH4Wno1GP_d2Le226oP-fuu5kv_RKshAr_aU7D9otm8UBFAG_cIVNAzXv9LxzYgirQNjVV93kZfbDa-g4PHyy8eJ50vr3jiugSgeub0CJ0A1q601fKX-Cio8Sq7s7NaCQpxMks5V0BJYkkkip0QGJAuJHBORkmxM0pSknGQTK0-ELQhOUkqyiIiAiNBWTihJ_aYwIamwt-zj0M6UJCEQ2kYC9WOSCZIkRPT-25nz534ydXXhLcoezuetr3teeuemhVfrwGB039pK4Qne5NKFyaiRAYUIPCldjMnORLuz0R0U2Z7BdVlw2qnb5f26GVT7t8mu34I4T46X9m1syEMqYmBNNiQB0DW7L3DxIxs4Jdxhe7-GhU1tPITo921m9GDgzEAIYsmGAEWcx4Fgg1EEeh3HLuZ8331YGNnVQnkf3a12NqsDmIY9lrN6iB60yxOcOKw9QqPL-jG6052OeIJ0BzlcF7iDHHaQwwA57CCH6wp3kMNlhRvI4QZy2EEO95DDA-TwOwDc-6doNc1W45nX5unwLiMqvJwynceRzq39hw6LImQbYXge6yKKlMqVMjAEJgpZTvNQU2l_t2-UMDQPmCmCZ-igqivzHGEmhA5ZHCmdaxhVvpFCxUyHVMuiUJvwBTpsBmoNPbla36JCqNCP4PraxWtZny4nGSwjLBkWL__Uwit0z0qcl-01Oth-25k3wDu36rDBxS8BnGow
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Research+Topics+and+Trends+on+COVID-19+in+Korea+Using+Latent+Dirichlet+Allocation+%28LDA%29&rft.jtitle=%E9%9F%93%E5%9C%8B%EC%BB%B4%ED%93%A8%ED%84%B0%E6%83%85%E5%A0%B1%E5%AD%B8%E6%9C%83%EF%A5%81%E6%96%87%E8%AA%8C&rft.au=Heo%2C+Seong-Min&rft.au=Yang%2C+Ji-Yeon&rft.date=2020&rft.issn=1598-849X&rft.eissn=2383-9945&rft.volume=25&rft.issue=12&rft.spage=83&rft.epage=91&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202003440879107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-849X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-849X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-849X&client=summon