Analysis of Research Topics and Trends on COVID-19 in Korea Using Latent Dirichlet Allocation (LDA)
This study aims to identify research topics and examine the trend of Covid19-related papers on DBpia. Applying latent Dirichlet allocation (LDA), we have extracted seven research topics, each of which concerns "International Dynamics", "Technology & Security", "Psycholog...
Saved in:
Published in | 韓國컴퓨터情報學會論文誌 Vol. 25; no. 12; pp. 83 - 91 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Korean |
Published |
한국컴퓨터정보학회
2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1598-849X 2383-9945 |
Cover
Abstract | This study aims to identify research topics and examine the trend of Covid19-related papers on DBpia. Applying latent Dirichlet allocation (LDA), we have extracted seven research topics, each of which concerns "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", and "Religion-Related". In addition, we used the multinomial logistic model to examine the trend of research topics. We found that the papers mainly cover topics related to "International Dynamics" and "Biomedical-Related" before June 2020, but the topics have become diverse since then. In particular, topics regarding "Economic Impact", "Online Education" and "Psychological Impact" has drawn increased attention of researchers. The findings would provide a guideline for collaboration in Covid19-related research, and could serve as a reference work for active research. 본 연구에서는 DBpia에 등록된 코로나19 관련 논문을 대상으로 연구 토픽을 밝히고 연구 변화 추세를 검토한다. 잠재 디리슐레 할당(Latent Dirichlet Allocation) 알고리즘을 적용한 결과, 7개의 연구 토픽을 도출하였고, 각 토픽은 "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", "Religion-Related"에 관한 내용이었다. 또한 다범주 로짓모형을 사용하여 연구 토픽의 추세 변화를 살펴본 결과, 2020년 6월 전에는 국제적 역학관계 및 생물 의학 관련 논문이 주를 이루었다면, 이후에는 다양한 분야로 연구 주제가 확대되었다. 특히 경제적인 영향, 온라인 교육, 심리적인 영향에 관한 연구가 꾸준히 증가함을 확인할 수 있었다. 이러한 결과는 향후 코로나19 관련 공동 연구의 가이드 라인을 제시하고, 활발한 연구 활동을 위한 기초자료로 활용될 수 있을 것이다. |
---|---|
AbstractList | This study aims to identify research topics and examine the trend of Covid19-related papers on DBpia. Applying latent Dirichlet allocation (LDA), we have extracted seven research topics, each of which concerns "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", and "Religion-Related". In addition, we used the multinomial logistic model to examine the trend of research topics. We found that the papers mainly cover topics related to "International Dynamics" and "Biomedical-Related" before June 2020, but the topics have become diverse since then. In particular, topics regarding "Economic Impact", "Online Education" and "Psychological Impact" has drawn increased attention of researchers. The findings would provide a guideline for collaboration in Covid19-related research, and could serve as a reference work for active research. 본 연구에서는 DBpia에 등록된 코로나19 관련 논문을 대상으로 연구 토픽을 밝히고 연구 변화 추세를 검토한다. 잠재 디리슐레 할당(Latent Dirichlet Allocation) 알고리즘을 적용한 결과, 7개의 연구 토픽을 도출하였고, 각 토픽은 "International Dynamics", "Technology & Security", "Psychological Impact", "Biomedical-Related", "Economic Impact", "Online Education", "Religion-Related"에 관한 내용이었다. 또한 다범주 로짓모형을 사용하여 연구 토픽의 추세 변화를 살펴본 결과, 2020년 6월 전에는 국제적 역학관계 및 생물 의학 관련 논문이 주를 이루었다면, 이후에는 다양한 분야로 연구 주제가 확대되었다. 특히 경제적인 영향, 온라인 교육, 심리적인 영향에 관한 연구가 꾸준히 증가함을 확인할 수 있었다. 이러한 결과는 향후 코로나19 관련 공동 연구의 가이드 라인을 제시하고, 활발한 연구 활동을 위한 기초자료로 활용될 수 있을 것이다. |
Author | Seong-Min Heo(허성민) Ji-Yeon Yang(양지연) |
Author_xml | – sequence: 1 fullname: Heo, Seong-Min – sequence: 2 fullname: Yang, Ji-Yeon |
BookMark | eNpFjs9LwzAcxYNMcM79D7kIeih8m19NjmWdOlcsSBVvJU1SF1bT0dTD_nsLCp7eg_d5j3eNFmEI7gItCZU0UYrxBVqmXMlEMvVxhdYx-haoIJkiXCyRyYPuz9FHPHT41UWnR3PA9XDyJmIdLK5HF-ycBryp3ndFkirsA94Po9P4LfrwiUs9uTDhwo_eHHo34bzvB6MnP3fuyiK_v0GXne6jW__pCtUP23rzlJTV426Tl8lRgEwsEGMzYSwwwltgsuNES8dsZjoh2ta2raOSOMGJBcsNqBlkupUOLCWuoyt0-zt79HHyzfy6b57zfUWAAFDGQGYqheyfC9-j_3LW6-Y0Gz2em5eq2KbAIZNE0h9_RF6V |
ContentType | Journal Article |
DBID | DBRKI TDB JDI |
DEWEY | 651.8 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals KoreaScience |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
DocumentTitle_FL | LDA를 이용한 코로나 19 국내 연구토픽 및 동향 분석 |
EISSN | 2383-9945 |
EndPage | 91 |
ExternalDocumentID | JAKO202003440879107 NODE10507828 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB JDI |
ID | FETCH-LOGICAL-k608-d02cd76cd0425b048f52a8e4d7cf66bbdbbe382e652d0d5c090424ab8e0d32ef3 |
ISSN | 1598-849X |
IngestDate | Fri Dec 22 12:01:14 EST 2023 Thu Feb 06 13:08:24 EST 2025 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 12 |
Keywords | latent Dirichlet allocation research topic multinomial logistic model 다범주 로짓모형 Covid19 잠재 디리슐레 할당 text mining 연구 토픽 코로나19 텍스트 마이닝 19 |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k608-d02cd76cd0425b048f52a8e4d7cf66bbdbbe382e652d0d5c090424ab8e0d32ef3 |
Notes | KISTI1.1003/JNL.JAKO202003440879107 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202003440879107&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 9 |
ParticipantIDs | kisti_ndsl_JAKO202003440879107 nurimedia_primary_NODE10507828 |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationTitle | 韓國컴퓨터情報學會論文誌 |
PublicationTitleAlternate | Journal of the Korea Society of Computer and Information |
PublicationYear | 2020 |
Publisher | 한국컴퓨터정보학회 |
Publisher_xml | – name: 한국컴퓨터정보학회 |
SSID | ssib036279256 ssib001107257 ssib044738270 ssib012146333 ssib008451689 ssib053377514 |
Score | 1.7083333 |
Snippet | This study aims to identify research topics and examine the trend of Covid19-related papers on DBpia. Applying latent Dirichlet allocation (LDA), we have... |
SourceID | kisti nurimedia |
SourceType | Open Access Repository Publisher |
StartPage | 83 |
Title | Analysis of Research Topics and Trends on COVID-19 in Korea Using Latent Dirichlet Allocation (LDA) |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE10507828 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202003440879107&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaMDH0MRZ_oM-BQAi0CFRRFSeQo2TJcJ46HukUyGSZFpUICKSjspUOn_vAeRT2cIkAfi0CcKELkfTp-PJF3CL2linHFtPIKHXKP-9rAN6dhqaJ87StqCtrE2V6cRrPPfH4Wno1GP_d2Le226oP-fuu5kv_RKshAr_aU7D9otm8UBFAG_cIVNAzXv9LxzYgirQNjVV93kZfbDa-g4PHyy8eJ50vr3jiugSgeub0CJ0A1q601fKX-Cio8Sq7s7NaCQpxMks5V0BJYkkkip0QGJAuJHBORkmxM0pSknGQTK0-ELQhOUkqyiIiAiNBWTihJ_aYwIamwt-zj0M6UJCEQ2kYC9WOSCZIkRPT-25nz534ydXXhLcoezuetr3teeuemhVfrwGB039pK4Qne5NKFyaiRAYUIPCldjMnORLuz0R0U2Z7BdVlw2qnb5f26GVT7t8mu34I4T46X9m1syEMqYmBNNiQB0DW7L3DxIxs4Jdxhe7-GhU1tPITo921m9GDgzEAIYsmGAEWcx4Fgg1EEeh3HLuZ8331YGNnVQnkf3a12NqsDmIY9lrN6iB60yxOcOKw9QqPL-jG6052OeIJ0BzlcF7iDHHaQwwA57CCH6wp3kMNlhRvI4QZy2EEO95DDA-TwOwDc-6doNc1W45nX5unwLiMqvJwynceRzq39hw6LImQbYXge6yKKlMqVMjAEJgpZTvNQU2l_t2-UMDQPmCmCZ-igqivzHGEmhA5ZHCmdaxhVvpFCxUyHVMuiUJvwBTpsBmoNPbla36JCqNCP4PraxWtZny4nGSwjLBkWL__Uwit0z0qcl-01Oth-25k3wDu36rDBxS8BnGow |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Research+Topics+and+Trends+on+COVID-19+in+Korea+Using+Latent+Dirichlet+Allocation+%28LDA%29&rft.jtitle=%E9%9F%93%E5%9C%8B%EC%BB%B4%ED%93%A8%ED%84%B0%E6%83%85%E5%A0%B1%E5%AD%B8%E6%9C%83%EF%A5%81%E6%96%87%E8%AA%8C&rft.au=Heo%2C+Seong-Min&rft.au=Yang%2C+Ji-Yeon&rft.date=2020&rft.issn=1598-849X&rft.eissn=2383-9945&rft.volume=25&rft.issue=12&rft.spage=83&rft.epage=91&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202003440879107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-849X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-849X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-849X&client=summon |