주변화 모형을 이용한 의료 패널 이진 데이터 분석
Longitudinal data are measured repeatedly over time from the same subject, so there is a correlation from the repeated outcomes. Therefore, when analyzing this correlation, both serial correlation and between-subject variation must be considered in longitudinal data analysis. In this paper, we will...
Saved in:
Published in | Ŭngyong tʻonggye yŏnʼgu Vol. 37; no. 4; pp. 467 - 484 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Korean |
Published |
한국통계학회
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1225-066X 2383-5818 |
Cover
Summary: | Longitudinal data are measured repeatedly over time from the same subject, so there is a correlation from the repeated outcomes. Therefore, when analyzing this correlation, both serial correlation and between-subject variation must be considered in longitudinal data analysis. In this paper, we will focus on the marginalized models to estimate the population average effect of covariates among models for analyzing longitudinal binary data. Marginalized models for longitudinal binary data include marginalized random effects models, marginalized transition models, and marginalized transition random effect models, and in this paper, these models are first reviewed, and simulations are conducted using complete data and missing data to compare the performance of the models. When there were missing values in the data, there is a difference in performance depending on the model in which the data was generated. We analyze Korea Health Panel data using marginalized models. The Korean Medical Panel data considers subjective unhealthy responses as response variables as binary variables, compares models with several explanatory variables, and presents the most suitable model. 경시적 자료는 같은 개체를 반복 측정함으로써 시간의 흐름에 따른 반복 측정된 자료들 간의 상관관계가 존재한다. 따라서 경시적 자료분석에서는 이 상관관계를 분석할 때 개체 내 상관관계와 개체 간 변동성 모두를 고려해야 한다. 본 논문에서는 경시적 이진 자료를 분석하기 위한 모형 중 공변량의 모집단 평균 효과의 추정을 위해 주변화 모형에 집중하고자 한다. 경시적 이진 자료분석을 위한 주변화 모형으로는 주변화 임의효과, 주변화 전이, 주변화 전이 임의효과 모형이 있으며, 본 논문에서 이들 모형을 먼저 고찰하고, 그리고 모형들의 성능을 비교하기 위해 결측치가 없는 자료와 결측치가 있는 자료로 나눠서 모의실험을 진행한다. 모의실험에서 자료에 결측치가 있는 경우에 자료가 생성된 모형에 따른 성능 차이가 있음을 확인하였다. 마지막으로 주변화 모형을 이용하여 한국의료패널자료를 분석한다. 한국의료패널자료는 반응변수로 주관적 불건강 응답을 이진변수로 고려하였고, 여러 설명변수를 가진 모형을 비교하고 가장 적합한 모형을 제시한다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202428253373228 |
ISSN: | 1225-066X 2383-5818 |