객체 인식 모델을 활용한 적재 불량 화물차 탐지 시스템
Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. therefore we propose to build an object detection...
Saved in:
Published in | 한국정보통신학회논문지 Vol. 26; no. 12; pp. 1794 - 1799 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Korean |
Published |
한국정보통신학회
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2234-4772 2288-4165 |
Cover
Abstract | Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. therefore we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Also, we propose an integrated system for tracking the detected vehicles. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data. 최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만 장의 데이터셋을 비교 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 또한 객체 추적을 통해 실시간 검지를 수행하는 방법을 제안한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다. |
---|---|
AbstractList | Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. therefore we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Also, we propose an integrated system for tracking the detected vehicles. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data. 최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만 장의 데이터셋을 비교 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 또한 객체 추적을 통해 실시간 검지를 수행하는 방법을 제안한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다. |
Author | 정우진(Woojin Jung) 박진욱(Jinuk Park) 박용주(Yongju Park) |
Author_xml | – sequence: 1 fullname: 정우진(Woojin Jung) – sequence: 2 fullname: 박진욱(Jinuk Park) – sequence: 3 fullname: 박용주(Yongju Park) |
BookMark | eNpFjj1Lw1AYhS9SwVr7H-7iGLj3vvcjGUutH7WYpXtI0gRCa5RGBzdFBbUIDjooiToIVulQRKSDv8jc_AcjCk7ncDg8PIuoEu_EwRyqMmaaBqdSVH46cIMrxRZQPUkij4BkyqIgq6j9Nc302zvW2UyPMpy_jvPLmc5OcHGb6ruX4ibF-vFI309w_nGWP5yX-3U--dTTMS6Or_TzIdajVF88FafpEpoP3UES1P-yhrqrrW5z3ejYaxvNRsfoSwIGCyzCWEBIqSApFcQTbmgpCgEHkL5FPFqqKZ-bLAyl6XLBZcjKl_Jd36c9qKHlX2w_SvYiJ-4lA6fd2LRZiSXAhFBEgIL_X7w_jLaDXuQ6u2VxhwfOlr3SopSaQgmAb_Qtatg |
ContentType | Journal Article |
DBID | DBRKI TDB JDI |
DEWEY | 003.5 |
DatabaseName | DBPIA - 디비피아 DBPIA KoreaScience |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
DocumentTitle_FL | An Overloaded Vehicle Identifying System based on Object Detection Model |
EISSN | 2288-4165 |
EndPage | 1799 |
ExternalDocumentID | JAKO202203255705373 NODE11185753 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB JDI |
ID | FETCH-LOGICAL-k603-2e9022e0062761150b5af9713e4336c90b17917c482ff68a4546f20b57cacc1d3 |
ISSN | 2234-4772 |
IngestDate | Fri Dec 22 12:03:42 EST 2023 Thu Feb 06 13:37:15 EST 2025 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Object Detection 객체 인식 딥러닝 Identifying Overloaded Vehicle 적재 위반 차량 검출 Deep Learning 빅데이터 Big-data |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k603-2e9022e0062761150b5af9713e4336c90b17917c482ff68a4546f20b57cacc1d3 |
Notes | KISTI1.1003/JNL.JAKO202203255705373 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202203255705373&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 6 |
ParticipantIDs | kisti_ndsl_JAKO202203255705373 nurimedia_primary_NODE11185753 |
PublicationCentury | 2000 |
PublicationDate | 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationTitle | 한국정보통신학회논문지 |
PublicationTitleAlternate | Journal of the Korea Institute of Information and Communication Engineering |
PublicationYear | 2022 |
Publisher | 한국정보통신학회 |
Publisher_xml | – name: 한국정보통신학회 |
SSID | ssib036279136 ssib053377456 ssib044738262 ssib015937029 ssib023393675 ssib012146319 |
Score | 2.1657314 |
Snippet | Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions... |
SourceID | kisti nurimedia |
SourceType | Open Access Repository Publisher |
StartPage | 1794 |
Title | 객체 인식 모델을 활용한 적재 불량 화물차 탐지 시스템 |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11185753 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202203255705373&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKL9ADjwLiWUUIn6qgbOzE9jHZTVUtansporfVJptIULSL2PbCAYEACaiQOMABtAsckCiohwoh1AO_iM3-B2acxwa0Eo9L5Iwn47Ensb9x7DEhl0UIKDlibdMVSWTySIWm5G1lhh0uYvxxFCf4R3dl1V2-xpsbzsbMoUuVVUvbW-GV6O7UfSX_Y1WggV1xl-w_WLYUCgRIg33hChaG61_ZmAYe9S2qGjSoU9-mPl_EFNz7EhPShzSQfOp51JOYkEUeMElkb1ClqKprEjApTXGAokV5FkBNnRdQr65F-S6VWpRaolKVErguBtTQokArT-o8yaiytChBpbVYqKW5JBTINRMWWMXJpRa6ig71Grk2QEQdGNRVP-hibiYTcvOnskp4VNZ1lR2tVKadLFUpXrWKYN0Efqktn7D4up2dMqfgrU1lyRsSeEHPchq6mfer13u9m3m883y6xa7MvQKQ4iYX4pfBI9vuX3wkdmUowJ6uAisw8t5kzC3WGfw2FJcLJJve1TUs3WI2xkhzmMCAtgAmcdXiyr2g6DJreC47m0TkA3DKROVHq82YYpVwPQBXhKqxEoFyLpisRIwE8A_-gD7zuKwuuG3oy9yYI4e723jmBHRcFQy2fpwczZ0nw8u-hBNkZrM3T47ljpSRD1P9eTK3UgYj7p8kzR_7w_TLVyMdHqQ7Q2P0eXf0_CAdPjLGrwfpm0_jVwMjff8gfbtnjL49Gb17CvSXo73v6f6uMX74Iv1430h3BumzD-PHg1NkfSlYry-b-REi5qZrMdOOFTRijBuFhYu-T-i0EyVqLOaMuZGyQozOKyIu7SRxZZs73E1s4BJRO4pqHXaazHZ73fgMMTp2yB0ROgmi2sR22kqA68I7zAkjcMnDs2RBt1Kr2-nfak2xHzCUzde6nYWSaa2uNQJAG3hMLjv3JwnnyRGkZBOAF8js1p3t-CJA4q1wQb8UPwEV847- |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EA%B0%9D%EC%B2%B4+%EC%9D%B8%EC%8B%9D+%EB%AA%A8%EB%8D%B8%EC%9D%84+%ED%99%9C%EC%9A%A9%ED%95%9C+%EC%A0%81%EC%9E%AC+%EB%B6%88%EB%9F%89+%ED%99%94%EB%AC%BC%EC%B0%A8+%ED%83%90%EC%A7%80+%EC%8B%9C%EC%8A%A4%ED%85%9C&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80&rft.au=%EC%A0%95%EC%9A%B0%EC%A7%84&rft.au=%EB%B0%95%EC%A7%84%EC%9A%B1&rft.au=%EB%B0%95%EC%9A%A9%EC%A3%BC&rft.au=Jung%2C+Woojin&rft.date=2022&rft.issn=2234-4772&rft.volume=26&rft.issue=12&rft.spage=1794&rft.epage=1799&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202203255705373 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon |