객체 인식 모델을 활용한 적재 불량 화물차 탐지 시스템

Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. therefore we propose to build an object detection...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 26; no. 12; pp. 1794 - 1799
Main Authors 정우진(Woojin Jung), 박진욱(Jinuk Park), 박용주(Yongju Park)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2022
Subjects
Online AccessGet full text
ISSN2234-4772
2288-4165

Cover

Abstract Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. therefore we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Also, we propose an integrated system for tracking the detected vehicles. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data. 최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만 장의 데이터셋을 비교 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 또한 객체 추적을 통해 실시간 검지를 수행하는 방법을 제안한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다.
AbstractList Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions due to the abnormal weight distribution, and can cause great damage once an accident occurs. therefore we propose to build an object detection-based AI model to identify overloaded vehicles that cause such social problems. In addition, we present a simple yet effective method to construct an object detection model for the large-scale vehicle images. In particular, we utilize the large-scale of vehicle image sets provided by open AI-Hub, which include the overloaded vehicles. We inspected the specific features of sizes of vehicles and types of image sources, and pre-processed these images to train a deep learning-based object detection model. Also, we propose an integrated system for tracking the detected vehicles. Finally, we demonstrated that the detection performance of the overloaded vehicle was improved by about 23% compared to the one using raw data. 최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만 장의 데이터셋을 비교 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 또한 객체 추적을 통해 실시간 검지를 수행하는 방법을 제안한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다.
Author 정우진(Woojin Jung)
박진욱(Jinuk Park)
박용주(Yongju Park)
Author_xml – sequence: 1
  fullname: 정우진(Woojin Jung)
– sequence: 2
  fullname: 박진욱(Jinuk Park)
– sequence: 3
  fullname: 박용주(Yongju Park)
BookMark eNpFjj1Lw1AYhS9SwVr7H-7iGLj3vvcjGUutH7WYpXtI0gRCa5RGBzdFBbUIDjooiToIVulQRKSDv8jc_AcjCk7ncDg8PIuoEu_EwRyqMmaaBqdSVH46cIMrxRZQPUkij4BkyqIgq6j9Nc302zvW2UyPMpy_jvPLmc5OcHGb6ruX4ibF-vFI309w_nGWP5yX-3U--dTTMS6Or_TzIdajVF88FafpEpoP3UES1P-yhrqrrW5z3ejYaxvNRsfoSwIGCyzCWEBIqSApFcQTbmgpCgEHkL5FPFqqKZ-bLAyl6XLBZcjKl_Jd36c9qKHlX2w_SvYiJ-4lA6fd2LRZiSXAhFBEgIL_X7w_jLaDXuQ6u2VxhwfOlr3SopSaQgmAb_Qtatg
ContentType Journal Article
DBID DBRKI
TDB
JDI
DEWEY 003.5
DatabaseName DBPIA - 디비피아
DBPIA
KoreaScience
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitle_FL An Overloaded Vehicle Identifying System based on Object Detection Model
EISSN 2288-4165
EndPage 1799
ExternalDocumentID JAKO202203255705373
NODE11185753
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
JDI
ID FETCH-LOGICAL-k603-2e9022e0062761150b5af9713e4336c90b17917c482ff68a4546f20b57cacc1d3
ISSN 2234-4772
IngestDate Fri Dec 22 12:03:42 EST 2023
Thu Feb 06 13:37:15 EST 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Object Detection
객체 인식
딥러닝
Identifying Overloaded Vehicle
적재 위반 차량 검출
Deep Learning
빅데이터
Big-data
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k603-2e9022e0062761150b5af9713e4336c90b17917c482ff68a4546f20b57cacc1d3
Notes KISTI1.1003/JNL.JAKO202203255705373
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202203255705373&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 6
ParticipantIDs kisti_ndsl_JAKO202203255705373
nurimedia_primary_NODE11185753
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle 한국정보통신학회논문지
PublicationTitleAlternate Journal of the Korea Institute of Information and Communication Engineering
PublicationYear 2022
Publisher 한국정보통신학회
Publisher_xml – name: 한국정보통신학회
SSID ssib036279136
ssib053377456
ssib044738262
ssib015937029
ssib023393675
ssib012146319
Score 2.1657314
Snippet Recently, the increasing number of overloaded vehicles on the road poses a risk to traffic safety, such as falling objects, road damage, and chain collisions...
SourceID kisti
nurimedia
SourceType Open Access Repository
Publisher
StartPage 1794
Title 객체 인식 모델을 활용한 적재 불량 화물차 탐지 시스템
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11185753
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO202203255705373&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKL9ADjwLiWUUIn6qgbOzE9jHZTVUtansporfVJptIULSL2PbCAYEACaiQOMABtAsckCiohwoh1AO_iM3-B2acxwa0Eo9L5Iwn47Ensb9x7DEhl0UIKDlibdMVSWTySIWm5G1lhh0uYvxxFCf4R3dl1V2-xpsbzsbMoUuVVUvbW-GV6O7UfSX_Y1WggV1xl-w_WLYUCgRIg33hChaG61_ZmAYe9S2qGjSoU9-mPl_EFNz7EhPShzSQfOp51JOYkEUeMElkb1ClqKprEjApTXGAokV5FkBNnRdQr65F-S6VWpRaolKVErguBtTQokArT-o8yaiytChBpbVYqKW5JBTINRMWWMXJpRa6ig71Grk2QEQdGNRVP-hibiYTcvOnskp4VNZ1lR2tVKadLFUpXrWKYN0Efqktn7D4up2dMqfgrU1lyRsSeEHPchq6mfer13u9m3m883y6xa7MvQKQ4iYX4pfBI9vuX3wkdmUowJ6uAisw8t5kzC3WGfw2FJcLJJve1TUs3WI2xkhzmMCAtgAmcdXiyr2g6DJreC47m0TkA3DKROVHq82YYpVwPQBXhKqxEoFyLpisRIwE8A_-gD7zuKwuuG3oy9yYI4e723jmBHRcFQy2fpwczZ0nw8u-hBNkZrM3T47ljpSRD1P9eTK3UgYj7p8kzR_7w_TLVyMdHqQ7Q2P0eXf0_CAdPjLGrwfpm0_jVwMjff8gfbtnjL49Gb17CvSXo73v6f6uMX74Iv1430h3BumzD-PHg1NkfSlYry-b-REi5qZrMdOOFTRijBuFhYu-T-i0EyVqLOaMuZGyQozOKyIu7SRxZZs73E1s4BJRO4pqHXaazHZ73fgMMTp2yB0ROgmi2sR22kqA68I7zAkjcMnDs2RBt1Kr2-nfak2xHzCUzde6nYWSaa2uNQJAG3hMLjv3JwnnyRGkZBOAF8js1p3t-CJA4q1wQb8UPwEV847-
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%EA%B0%9D%EC%B2%B4+%EC%9D%B8%EC%8B%9D+%EB%AA%A8%EB%8D%B8%EC%9D%84+%ED%99%9C%EC%9A%A9%ED%95%9C+%EC%A0%81%EC%9E%AC+%EB%B6%88%EB%9F%89+%ED%99%94%EB%AC%BC%EC%B0%A8+%ED%83%90%EC%A7%80+%EC%8B%9C%EC%8A%A4%ED%85%9C&rft.jtitle=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C%EB%85%BC%EB%AC%B8%EC%A7%80&rft.au=%EC%A0%95%EC%9A%B0%EC%A7%84&rft.au=%EB%B0%95%EC%A7%84%EC%9A%B1&rft.au=%EB%B0%95%EC%9A%A9%EC%A3%BC&rft.au=Jung%2C+Woojin&rft.date=2022&rft.issn=2234-4772&rft.volume=26&rft.issue=12&rft.spage=1794&rft.epage=1799&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO202203255705373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-4772&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-4772&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-4772&client=summon