Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models
Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance...
Saved in:
Published in | Communications for statistical applications and methods Vol. 24; no. 1; pp. 81 - 96 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Korean |
Published |
한국통계학회
31.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2287-7843 |
Cover
Abstract | Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set. |
---|---|
AbstractList | Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set. |
Author | Insuk Sohn Jiyeong Kim Keunbaik Lee |
Author_xml | – sequence: 1 fullname: Kim, Jiyeong – sequence: 2 fullname: Sohn, Insuk – sequence: 3 fullname: Lee, Keunbaik |
BookMark | eNpdzDtPwzAYhWEPRaKU_gIWL4wRdhzfxlJxKVTq0j1y7M-VaWJXdlrRf08FiIHpLM95b9AkpggTNK1rJSupGnaN5qV8EEIoV5LQZorCozlDCSbiITnoQ9zh5HE20aUBg_dgx4IPGWwoIcUHm04mX7QFPJgxh08cIrbH4dibMZwA92kXxv_373K5RVfe9AXmvztD2-en7fK1Wm9eVsvFutpzoitBveUdo6A1lwCK1Ew1hDBHQFurlbAdM513QmlKlTNWCEo86aQjrm6Asxm6_8nuQxlDG13p27fF-6YmVFLNBGNcS6kv7u7PlfaQw2DyuWWNFlxr9gVyeV5h |
ContentType | Journal Article |
DBID | HZB Q5X JDI |
DEWEY | 519.5 |
DatabaseName | Koreanstudies Information Service System Korean Studies Information Service System (KISS) B-Type KoreaScience |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
DocumentTitleAlternate | Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models |
EndPage | 96 |
ExternalDocumentID | JAKO201719363359779 3496599 |
GroupedDBID | .UV 9ZL ALMA_UNASSIGNED_HOLDINGS ARCSS HZB JDI M~E Q5X TUS |
ID | FETCH-LOGICAL-k509-61fc5b31e9957ee802384003d0e9cc986cb3abfd689118dac6610f0b7d0d24e53 |
ISSN | 2287-7843 |
IngestDate | Fri Dec 22 12:03:42 EST 2023 Wed Jan 24 03:12:00 EST 2024 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | moving-average generalized linear mixed models autoregressive heterogeneity positive definiteness modified Cholesky decomposition |
Language | Korean |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-k509-61fc5b31e9957ee802384003d0e9cc986cb3abfd689118dac6610f0b7d0d24e53 |
Notes | The Korean Statistical Society KISTI1.1003/JNL.JAKO201719363359779 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201719363359779&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 16 |
ParticipantIDs | kisti_ndsl_JAKO201719363359779 kiss_primary_3496599 |
PublicationCentury | 2000 |
PublicationDate | 20170131 |
PublicationDateYYYYMMDD | 2017-01-31 |
PublicationDate_xml | – month: 01 year: 2017 text: 20170131 day: 31 |
PublicationDecade | 2010 |
PublicationTitle | Communications for statistical applications and methods |
PublicationTitleAlternate | CSAM(Communications for Statistical Applications and Methods) |
PublicationYear | 2017 |
Publisher | 한국통계학회 |
Publisher_xml | – name: 한국통계학회 |
SSID | ssj0001587014 ssib053376881 ssib044733355 |
Score | 1.9746248 |
Snippet | Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to... |
SourceID | kisti kiss |
SourceType | Open Access Repository Publisher |
StartPage | 81 |
SubjectTerms | autoregressive generalized linear mixed models heterogeneity modified Cholesky decomposition moving-average positive definiteness |
Title | Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models |
URI | https://kiss.kstudy.com/ExternalLink/Ar?key=3496599 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201719363359779&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-MwFLaAExzYEdsgH7ihgFNn8xFGIFRUuBSJWxUvEVFpgkiKhjnw23lekpSq0iwXq0pbJ8r79Bbb3_cQOuUS0gwRQG2iGAxRpDyWqMzLslT4RIQyNOr6g_vo9jHoP4VPnTyBYZfU_Fz8Xsgr-R-rwjWwq2bJ_oNl20nhAnwG-8IIFobxr2x8lX4oQ4I0_Wzc-WUIPrKctAc1Xt9cFx24jSjfoTQ2JIGJlub_pVc7xHRiWni9qzPtB-v5Cczc1WwS-41UYvQc9IpEbSSftfTAzJ642ZuwXaq7XSPbwLmff6jSxU29xFM-WxJaUU1b9pA7JnSnpgVP8_HsEoWvz7I2vt14sh6UZV6cWD2mxu1a6vQ3eFkfalu4uGjMFuhkz8Wv9lRh__LuQd8ectKIUi2sx5bRMvW1-xt8XjduJghiCl-3bgwSXqi5HP3WksvBiRlV-PbBIWBDPl9BBaPT-nwmBRluonVXO-BLC4QttDQut9GGqyOw89LVNlobtFq81Q7KG5TgBiW4zLA1MnZGxi1KLjqMYIsRnBe4wwg2GJn_u8XILhreXA9_3nquwYY3hjzRi_xMhJz6irEwVkpLAUK5T6gkignBkkhwmvJMRglExESmAnI5khEeSyJ7gQrpHlopykLtI5xkIqVxTEx6GnCZEh9cgwoT3gt7RAUHaEe_v9GrlVAZ2TYF7ACdmPc5KmT1Mlpgv8M__eAIrXaIO0Yr9dtU_YA0seYnxuhfAHls0w |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+modeling+of+random+effects+precision%2Fcovariance+matrix+in+cumulative+logit+random+effects+models&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=Kim%2C+Jiyeong&rft.au=Sohn%2C+Insuk&rft.au=Lee%2C+Keunbaik&rft.date=2017-01-31&rft.issn=2287-7843&rft.volume=24&rft.issue=1&rft.spage=81&rft.epage=96&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO201719363359779 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon |