Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models

Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance...

Full description

Saved in:
Bibliographic Details
Published inCommunications for statistical applications and methods Vol. 24; no. 1; pp. 81 - 96
Main Authors Kim, Jiyeong, Sohn, Insuk, Lee, Keunbaik
Format Journal Article
LanguageKorean
Published 한국통계학회 31.01.2017
Subjects
Online AccessGet full text
ISSN2287-7843

Cover

Abstract Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.
AbstractList Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.
Author Insuk Sohn
Jiyeong Kim
Keunbaik Lee
Author_xml – sequence: 1
  fullname: Kim, Jiyeong
– sequence: 2
  fullname: Sohn, Insuk
– sequence: 3
  fullname: Lee, Keunbaik
BookMark eNpdzDtPwzAYhWEPRaKU_gIWL4wRdhzfxlJxKVTq0j1y7M-VaWJXdlrRf08FiIHpLM95b9AkpggTNK1rJSupGnaN5qV8EEIoV5LQZorCozlDCSbiITnoQ9zh5HE20aUBg_dgx4IPGWwoIcUHm04mX7QFPJgxh08cIrbH4dibMZwA92kXxv_373K5RVfe9AXmvztD2-en7fK1Wm9eVsvFutpzoitBveUdo6A1lwCK1Ew1hDBHQFurlbAdM513QmlKlTNWCEo86aQjrm6Asxm6_8nuQxlDG13p27fF-6YmVFLNBGNcS6kv7u7PlfaQw2DyuWWNFlxr9gVyeV5h
ContentType Journal Article
DBID HZB
Q5X
JDI
DEWEY 519.5
DatabaseName Koreanstudies Information Service System
Korean Studies Information Service System (KISS) B-Type
KoreaScience
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
DocumentTitleAlternate Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models
EndPage 96
ExternalDocumentID JAKO201719363359779
3496599
GroupedDBID .UV
9ZL
ALMA_UNASSIGNED_HOLDINGS
ARCSS
HZB
JDI
M~E
Q5X
TUS
ID FETCH-LOGICAL-k509-61fc5b31e9957ee802384003d0e9cc986cb3abfd689118dac6610f0b7d0d24e53
ISSN 2287-7843
IngestDate Fri Dec 22 12:03:42 EST 2023
Wed Jan 24 03:12:00 EST 2024
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords moving-average
generalized linear mixed models
autoregressive
heterogeneity
positive definiteness
modified Cholesky decomposition
Language Korean
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-k509-61fc5b31e9957ee802384003d0e9cc986cb3abfd689118dac6610f0b7d0d24e53
Notes The Korean Statistical Society
KISTI1.1003/JNL.JAKO201719363359779
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201719363359779&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 16
ParticipantIDs kisti_ndsl_JAKO201719363359779
kiss_primary_3496599
PublicationCentury 2000
PublicationDate 20170131
PublicationDateYYYYMMDD 2017-01-31
PublicationDate_xml – month: 01
  year: 2017
  text: 20170131
  day: 31
PublicationDecade 2010
PublicationTitle Communications for statistical applications and methods
PublicationTitleAlternate CSAM(Communications for Statistical Applications and Methods)
PublicationYear 2017
Publisher 한국통계학회
Publisher_xml – name: 한국통계학회
SSID ssj0001587014
ssib053376881
ssib044733355
Score 1.9746248
Snippet Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to...
SourceID kisti
kiss
SourceType Open Access Repository
Publisher
StartPage 81
SubjectTerms autoregressive
generalized linear mixed models
heterogeneity
modified Cholesky decomposition
moving-average
positive definiteness
Title Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models
URI https://kiss.kstudy.com/ExternalLink/Ar?key=3496599
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201719363359779&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-MwFLaAExzYEdsgH7ihgFNn8xFGIFRUuBSJWxUvEVFpgkiKhjnw23lekpSq0iwXq0pbJ8r79Bbb3_cQOuUS0gwRQG2iGAxRpDyWqMzLslT4RIQyNOr6g_vo9jHoP4VPnTyBYZfU_Fz8Xsgr-R-rwjWwq2bJ_oNl20nhAnwG-8IIFobxr2x8lX4oQ4I0_Wzc-WUIPrKctAc1Xt9cFx24jSjfoTQ2JIGJlub_pVc7xHRiWni9qzPtB-v5Cczc1WwS-41UYvQc9IpEbSSftfTAzJ642ZuwXaq7XSPbwLmff6jSxU29xFM-WxJaUU1b9pA7JnSnpgVP8_HsEoWvz7I2vt14sh6UZV6cWD2mxu1a6vQ3eFkfalu4uGjMFuhkz8Wv9lRh__LuQd8ectKIUi2sx5bRMvW1-xt8XjduJghiCl-3bgwSXqi5HP3WksvBiRlV-PbBIWBDPl9BBaPT-nwmBRluonVXO-BLC4QttDQut9GGqyOw89LVNlobtFq81Q7KG5TgBiW4zLA1MnZGxi1KLjqMYIsRnBe4wwg2GJn_u8XILhreXA9_3nquwYY3hjzRi_xMhJz6irEwVkpLAUK5T6gkignBkkhwmvJMRglExESmAnI5khEeSyJ7gQrpHlopykLtI5xkIqVxTEx6GnCZEh9cgwoT3gt7RAUHaEe_v9GrlVAZ2TYF7ACdmPc5KmT1Mlpgv8M__eAIrXaIO0Yr9dtU_YA0seYnxuhfAHls0w
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+modeling+of+random+effects+precision%2Fcovariance+matrix+in+cumulative+logit+random+effects+models&rft.jtitle=Communications+for+statistical+applications+and+methods&rft.au=Kim%2C+Jiyeong&rft.au=Sohn%2C+Insuk&rft.au=Lee%2C+Keunbaik&rft.date=2017-01-31&rft.issn=2287-7843&rft.volume=24&rft.issue=1&rft.spage=81&rft.epage=96&rft.externalDBID=n%2Fa&rft.externalDocID=JAKO201719363359779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2287-7843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2287-7843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2287-7843&client=summon