Applications of the inverse Ising problem to biological data analysis
大規模な生命情報データの表現方法として、サンプルを行、計測した各要素を列とする行列形式は典型的な表現方法である。またこの行列データから相関関係や依存関係にある列のペアを検出する解析は、一般的なデータ解析手法であるといえる。この相関関係や依存関係を定量化する手法として、相関係数や相互情報量といった指標がよく利用されるが、これらの指標は擬似相関や偽陽性を多く検出する危険があることが知られている。近年では、このような偽陽性を防ぐための手法として生成モデルに基づくアプローチが利用されており、特にデータのとる値が離散(カテゴリカル)である場合は逆イジング法と呼ばれる。本総説では、この逆イジング法のモデル...
Saved in:
Published in | JSBi Bioinformatics Review Vol. 1; no. 1; pp. 3 - 11 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
Japanese Society for Bioinformatics
2020
特定非営利活動法人 日本バイオインフォマティクス学会 |
Online Access | Get full text |
ISSN | 2435-7022 |
DOI | 10.11234/jsbibr.2020.1 |
Cover
Loading…
Abstract | 大規模な生命情報データの表現方法として、サンプルを行、計測した各要素を列とする行列形式は典型的な表現方法である。またこの行列データから相関関係や依存関係にある列のペアを検出する解析は、一般的なデータ解析手法であるといえる。この相関関係や依存関係を定量化する手法として、相関係数や相互情報量といった指標がよく利用されるが、これらの指標は擬似相関や偽陽性を多く検出する危険があることが知られている。近年では、このような偽陽性を防ぐための手法として生成モデルに基づくアプローチが利用されており、特にデータのとる値が離散(カテゴリカル)である場合は逆イジング法と呼ばれる。本総説では、この逆イジング法のモデルとパラメータの学習方法、およびタンパク質構造解析を中心とした生命情報データ解析への応用例について紹介し、今後の展開について議論する。 |
---|---|
AbstractList | 大規模な生命情報データの表現方法として、サンプルを行、計測した各要素を列とする行列形式は典型的な表現方法である。またこの行列データから相関関係や依存関係にある列のペアを検出する解析は、一般的なデータ解析手法であるといえる。この相関関係や依存関係を定量化する手法として、相関係数や相互情報量といった指標がよく利用されるが、これらの指標は擬似相関や偽陽性を多く検出する危険があることが知られている。近年では、このような偽陽性を防ぐための手法として生成モデルに基づくアプローチが利用されており、特にデータのとる値が離散(カテゴリカル)である場合は逆イジング法と呼ばれる。本総説では、この逆イジング法のモデルとパラメータの学習方法、およびタンパク質構造解析を中心とした生命情報データ解析への応用例について紹介し、今後の展開について議論する。 |
Author | Fukunaga, Tsukasa |
Author_FL | 福永 津嵩 |
Author_FL_xml | – sequence: 1 fullname: 福永 津嵩 |
Author_xml | – sequence: 1 fullname: Fukunaga, Tsukasa organization: Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo |
BackLink | https://cir.nii.ac.jp/crid/1390004222631829760$$DView record in CiNii |
BookMark | eNo1kEtrwzAQhEVpoWmaa8869OpUb1nHENImEOgld7O25ERGkY1kCvn3dZqUhVlm-RjYeUGPsY8OoTdKlpQyLj66XPs6LRlh0-UBzZjgstCEsWe0yLkjhHDGtaZyhjarYQi-gdH3MeO-xePJYR9_XMoO77KPRzykvg7ujMce174P_XHCA7YwAoYI4ZJ9fkVPLYTsFvc9R4fPzWG9LfbfX7v1al90RpDCGuGMhJbWhKjacQ1GScHBkEbqllutala6kpbOgpXWlUoZZSUIQlvVlJzP0fstNnpfNf6qlJvpHcEYU5yWzGhFJmx7w7o8wtFVQ_JnSJcK0uib4KpbPRX9m7u5djW5f6Q5Qapc5L_Jd2bR |
ContentType | Journal Article |
Copyright | 2020 Japan Society for Bioinformatics |
Copyright_xml | – notice: 2020 Japan Society for Bioinformatics |
DBID | RYH |
DOI | 10.11234/jsbibr.2020.1 |
DatabaseName | CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | 逆イジング法の生命情報データ解析への応用 |
DocumentTitle_FL | 逆イジング法の生命情報データ解析への応用 |
EISSN | 2435-7022 |
EndPage | 11 |
ExternalDocumentID | 130007923106 article_jsbibr_1_1_1_jsbibr_2020_1_article_char_en |
GroupedDBID | JSF JSH M~E RJT RZJ RYH |
ID | FETCH-LOGICAL-j940-d94e95af1b006be37a96543a90c57f3d76b28e818edad5de86696d5a401f6c833 |
IngestDate | Thu Jun 26 23:28:37 EDT 2025 Wed Sep 03 06:05:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Language | Japanese |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j940-d94e95af1b006be37a96543a90c57f3d76b28e818edad5de86696d5a401f6c833 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jsbibr/1/1/1_jsbibr.2020.1/_article/-char/en |
PageCount | 9 |
ParticipantIDs | nii_cinii_1390004222631829760 jstage_primary_article_jsbibr_1_1_1_jsbibr_2020_1_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2020 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationTitle | JSBi Bioinformatics Review |
PublicationTitleAlternate | JSBi Bioinformatics Review |
PublicationTitle_FL | JSBi Bioinformatics Review |
PublicationYear | 2020 |
Publisher | Japanese Society for Bioinformatics 特定非営利活動法人 日本バイオインフォマティクス学会 |
Publisher_xml | – name: Japanese Society for Bioinformatics – name: 特定非営利活動法人 日本バイオインフォマティクス学会 |
References | [51] Saulo HP de Oliveria et al. (2017) Comparing co-evolution methods and their application to template-free protein structure prediction. Bioinformatics, 33(3):373-381. doi:10.1093/bioinformatics/btw618 [45] Thomas A Hopf et al. (2017) Mutation effects predicted from sequence co-variation. Nat. Biotechnol., 35(2):128-135. doi:10.1038/nbt.3769 [36] Sergey Ovchinnikov et al. (2017) Protein structure determination using metagenome sequence data. Science, 355(6322):294-298. doi:10.1126/science.aah4043 [40] Yuefeng Tang et al. (2015) Protein structure determination by combining sparse NMR data with evolutionary couplings. Nat. Methods, 12(8):751-754. doi:10.1038/nmeth.3455 [23] Faruck Morcos et al. (2011) Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. U. S. A., 108(49):E1293-E1301. doi:10.1073/pnas.1111471108 [38] Thomas A Hopf et al. (2019) The EVcouplings Python framework for coevolutionary sequence analysis. Bioinformatics, 35(9):1582-1584. doi:10.1093/ bioinformatics/bty862 [3] Richard R Stein et al. (2015) Inferring pairwise interactions from biological data using maximum-entropy probability models. PLoS Comput. Biol., 11(7):e1004182. doi: 10.1371/journal.pcbi.1004182 [5] Adam L. Berger et al. (1996) A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):39-71. [57] Takamitsu Watanabe et al. (2013) A pairwise maximum entropy model accurately describes resting-state human brain networks. Nat. Commun., 4:1370. doi:10.1038/ncomms2388 [6] David H. Ackley et al. (1985) A learning algorithm for Boltzmann machines. Cognitive Science, 9(1): 147-169. doi:10.1207/s15516709cog0901_7 [16] J. P. Barton et al. (2016) ACE: Adaptive cluster expansion for maximum entropy graphical model inference. Bioinformatics, 32(20):3089-3097. doi:10.1093/bioinformatics/btw328 [9] Sivaraman Balakrishnan et al. (2011) Learning generative models for protein fold families. Proteins, 79(4):1061-1078. doi:10.1002/prot.22934 [63] Edward D Lee et al. (2015) Statistical mechanics of the US supreme court. J. Stat. Phys., 160:275-301 [35] Jian Wang et al. (2017) Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide-nucleotide interactions from direct coupling analysis. Nucleic Acids Res., 45(11):6299-6309. doi:10.1093/nar/gkx386 [26] Anne-Florence Bitble et al. (2016) Inferring interaction partners from protein sequences. Proc. Natl. Acad. Sci. U. S. A., 113(43):12180-12185. doi:10.1073/pnas.1606762113 [20] Chau H. Nguyen et al. (2017) Inverse statistical problems: from the inverse Ising problem to data science. Advances in Physics, 66(3):197-261. doi:10.1080/00018732.2017.1341604 [32] Thomas A Hopf et al. (2012) Three-dimensional structures of membrane proteins from genomic sequencing. Cell, 149(7):1607-1621. doi:10.1016/j.cell.2012.04.012 [28] Qian Cong et al. (2019) Protein interaction networks revealed by proteome coevolution. Science, 365(6449):185-189. doi:10.1126/science.aaw6718 [12] Stefan Seemayer et al. (2014) CCMpred— Fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics, 30(21):3128-3130. doi:10.1093/bioinformatics/btu500 [58] Lorenzo Posani et al. (2017) Functional connectivity models for decoding of spatial representations from hippocampal CA1 recordings. J. Comput. Neurosci., 43(1):17-33. doi:10.1007/s10827-017-0645-9 [64] Theodore Garland Jr. and Anthony R Ives. (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat., 155(3):346-364. doi:10.1038/s41564- 018-0309-1 [39] Megan Sjodt et al. (2018) Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature, 556(7699):118-121. doi:10.1038/nature25985 [66] Michiaki Hamada. (2014) Fighting against uncertainty: an essential issue in bioinformatics. Brief. , 15(5):748-767. doi:10.1093/bib/bbt038 [2] Philip R Kensche et al. (2008) Practical and theoretical advances in predicting the function of a protein by its phylogenetic distribution.J. R. Soc. Interface, 5(19):151-170. doi:10.1098/rsif.2007.1047 [62] Benjamin Schubert et al. (2019) Genome-wide discovery of epistatic loci affecting antibiotic resistance in Neisseria gonorrhoeae using evolutionary couplings. Nat. Microbiol., 4(2):328-338 [11] Magnus Ekeberg et al. (2014) Fast pseudolikelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences. J. Comput. Phys., 276:341-356. doi:10.1016/j.jcp.2014.07.024 [19] Sohl-Dickstein, J. et al. (2011) Minimum probability flow learning. ICML [8] Julian Besag. (1975) Statistical analysis of non-lattice data. J. Roy. Stat. Soc. Ser. D, 24(3):179-195. doi:10.2307/2987782 [37] Nathan J Rollins et al. (2019) Inferring protein 3D structure from deep mutation scans. Nat. Genet., 51(7):1170-1176. doi:10.1038/s41588-019-0432-9 [18] Carlo Baldassi et al. (2014) Fast and accurate multivariate Gaussian modeling of protein families: Predicting residue contacts and protein-interaction partners. PLoS ONE, 9(3):e92721. doi:10.1371/journal.pone.0092721 [33] Eleonora De Leonardis et al. (2015) Direct-coupling analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction. Nucleic Acids Res., 43(21):10444-10455. doi:10.1093/nar/gkv932 [29] Debora S Marks et al. (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS ONE, 6(12):e28776. doi:10.1371/journal.pone.0028766 [47] Michael Schmidt and Kay Hamacher. (2017) Three-body interactions improve contact prediction within direct-coupling analysis. Phys. Rev. E, 96(5-1):052405. doi:10.1103/PhysRevE.96.052405 [22] Alexander Schug et al. (2009) High-resolution protein complexes from integrating genomic information with molecular simulation. Proc. Natl. Acad. Sci. U. S. A., 106(52):22124-22129. doi:10.1073/pnas.0912100106 [49] Yang Liu et al. (2018) Enhancing evolutionary couplings with deep convolutional neural networks. Cell Syst., 6(1):65-74.e3. doi:10.1016/j.cels.2017.11.014 [48] David T Jones et al. (2014) MetaPSICOV; combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics, 31(7):999-1006. doi:10.1093/bioinformatics/btu791 [59] Marcin J Skwark et al. (2017) Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet., 13(2):e1006508. doi:10.1371/journal.pgen.1006508 [24] Sergey Ovchinnikov et al. (2014) Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information. Elife, 3:e02030. doi:10.7554/eLife.02030 [30] Joanna I Sulkowska et al. (2012) Genomics-aided structure prediction. Proc. Natl. Acad. Sci. U. S. A., 109(26):10340-10345. doi:10.1073/pnas.1207864109 [43] Matteo Figliuzzi et al. (2016) Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase TEM-1. Mol. Biol. Evol., 33(1):268-280. doi:10.1093/molbev/msv211 [55] Chongli Qin and Lucy J Colwell. Power law tails in phylogenetic systems. Proc. Natl. Acad. Sci. U. S. A., 115(4):690-695. doi:10.1073/pnas.1711913115 [65] Daniel Barker and Mark Pegal. (2005) Predicting functional gene links from phylogenetic-statistical analyses of whole genomes. PLoS. Comput. Biol., 1(1):e3. doi:10.1371/journal.pcbi.0010003 [10] Magnus Ekeberg et al. (2013) Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys. Rev. E, 87(1):012707. doi:10.1103/PhysRevE.87.012707 [21] Martin weigt et al. (2009) Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. U. S. A., 106(1):67-72. doi:10.1073/pnas.0805923106 [41] Andrew L Ferguson et al. (2013) Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design. Immunity, 38(3):606-617. doi:10.1016/j.immuni.2012.11.022 [50] Sheng Wang et al. (2017) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13(1):e1005324. doi:10.1371/journal. pcbi.1005324 [15] Simona Cocco and Remi Monasson (2011) Adaptive cluster expansion for the inverse Ising problem: convergence, algorithms and tests. J. Stat. Phys., 147(2):252-314. doi:10.1007/s10955-012-0463-4 [56] Rodrigo Cofre et al. (2019) A comparison of the maximum entropy principle across biological spatial scales. Entropy, 21(10):1009. doi:10.3390/e21101009 [7] Matteo Figliuzzi et al. (2018) How pairwise coevolutionary models capture the collective residue variability in proteins? Mol. Biol. Evol., 35(4):1018-1027. doi:10.1093/molbev/msy007 [17] David T Jones et al. (2012) PSICOV: Precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics, 28(2):184-190. doi:10.1093/bioinformatics/btr638 [52] Guillaume Marmier et al. (2019) Phylogenetic correlations can suffice to infer protein partners from sequences. PLoS Comput. Biol., 15(10):e1007179. doi:10.1371/journal.pcbi.1007179 [27] Thomas Gueudre et al. (2016) Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis. Proc. Natl. Acad. Sci. U. S. A., 113(43):12180-12185. doi:10.1073/pnas.1607570113 [53] Adam J Hockenberry and Claus O Wilke. Phylogenetic weighting does little to improve the accuracy of evolutionary coupling analyses. Entropy, 21(10):1000. doi:10.3390/e21101000 [54] Edwin R Horta et al. (2019) Toward inferring Potts models for phylogenetically correlated sequence data. Entropy, 21(11):1090. doi:10.3390/e21111090 [1] Matteo Pellegrini et al. (1999) Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc. Natl. Acad. Sci. U. S. A., 96(8):4285-4288. doi:10.1073/pnas.96.8.4285 [42] Jaclyn K Mann et al. (2014) The fitness landsca |
References_xml | – reference: [28] Qian Cong et al. (2019) Protein interaction networks revealed by proteome coevolution. Science, 365(6449):185-189. doi:10.1126/science.aaw6718 – reference: [58] Lorenzo Posani et al. (2017) Functional connectivity models for decoding of spatial representations from hippocampal CA1 recordings. J. Comput. Neurosci., 43(1):17-33. doi:10.1007/s10827-017-0645-9 – reference: [32] Thomas A Hopf et al. (2012) Three-dimensional structures of membrane proteins from genomic sequencing. Cell, 149(7):1607-1621. doi:10.1016/j.cell.2012.04.012 – reference: [49] Yang Liu et al. (2018) Enhancing evolutionary couplings with deep convolutional neural networks. Cell Syst., 6(1):65-74.e3. doi:10.1016/j.cels.2017.11.014 – reference: [61] Chen-Yi Gao et al. (2019) DCA for genome-wide epistasis analysis: the statistical genetics perspective. Phys. Biol.,16(2):026002. doi:10.1088/1478-3975/aafbe0 – reference: [29] Debora S Marks et al. (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS ONE, 6(12):e28776. doi:10.1371/journal.pone.0028766 – reference: [6] David H. Ackley et al. (1985) A learning algorithm for Boltzmann machines. Cognitive Science, 9(1): 147-169. doi:10.1207/s15516709cog0901_7 – reference: [24] Sergey Ovchinnikov et al. (2014) Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information. Elife, 3:e02030. doi:10.7554/eLife.02030 – reference: [9] Sivaraman Balakrishnan et al. (2011) Learning generative models for protein fold families. Proteins, 79(4):1061-1078. doi:10.1002/prot.22934 – reference: [20] Chau H. Nguyen et al. (2017) Inverse statistical problems: from the inverse Ising problem to data science. Advances in Physics, 66(3):197-261. doi:10.1080/00018732.2017.1341604 – reference: [55] Chongli Qin and Lucy J Colwell. Power law tails in phylogenetic systems. Proc. Natl. Acad. Sci. U. S. A., 115(4):690-695. doi:10.1073/pnas.1711913115 – reference: [64] Theodore Garland Jr. and Anthony R Ives. (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat., 155(3):346-364. doi:10.1038/s41564- 018-0309-1 – reference: [40] Yuefeng Tang et al. (2015) Protein structure determination by combining sparse NMR data with evolutionary couplings. Nat. Methods, 12(8):751-754. doi:10.1038/nmeth.3455 – reference: [52] Guillaume Marmier et al. (2019) Phylogenetic correlations can suffice to infer protein partners from sequences. PLoS Comput. Biol., 15(10):e1007179. doi:10.1371/journal.pcbi.1007179 – reference: [5] Adam L. Berger et al. (1996) A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):39-71. – reference: [50] Sheng Wang et al. (2017) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13(1):e1005324. doi:10.1371/journal. pcbi.1005324 – reference: [39] Megan Sjodt et al. (2018) Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature, 556(7699):118-121. doi:10.1038/nature25985 – reference: [48] David T Jones et al. (2014) MetaPSICOV; combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics, 31(7):999-1006. doi:10.1093/bioinformatics/btu791 – reference: [31] Timothy Nugent and David T Jones. (2012) Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis. Proc. Natl. Acad. Sci. U. S. A., 109(24): E1540-E1547. doi:10.1073/pnas.1120036109 – reference: [12] Stefan Seemayer et al. (2014) CCMpred— Fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics, 30(21):3128-3130. doi:10.1093/bioinformatics/btu500 – reference: [26] Anne-Florence Bitble et al. (2016) Inferring interaction partners from protein sequences. Proc. Natl. Acad. Sci. U. S. A., 113(43):12180-12185. doi:10.1073/pnas.1606762113 – reference: [25] Thomas A Hopf et al. (2014) Sequence co-evolution gives 3D contacts and structures of protein complexes. Elife, 3:e03430. doi:10.7554/eLife.03430 – reference: [38] Thomas A Hopf et al. (2019) The EVcouplings Python framework for coevolutionary sequence analysis. Bioinformatics, 35(9):1582-1584. doi:10.1093/ bioinformatics/bty862 – reference: [3] Richard R Stein et al. (2015) Inferring pairwise interactions from biological data using maximum-entropy probability models. PLoS Comput. Biol., 11(7):e1004182. doi: 10.1371/journal.pcbi.1004182 – reference: [11] Magnus Ekeberg et al. (2014) Fast pseudolikelihood maximization for direct-coupling analysis of protein structure from many homologous amino-acid sequences. J. Comput. Phys., 276:341-356. doi:10.1016/j.jcp.2014.07.024 – reference: [23] Faruck Morcos et al. (2011) Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc. Natl. Acad. Sci. U. S. A., 108(49):E1293-E1301. doi:10.1073/pnas.1111471108 – reference: [35] Jian Wang et al. (2017) Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide-nucleotide interactions from direct coupling analysis. Nucleic Acids Res., 45(11):6299-6309. doi:10.1093/nar/gkx386 – reference: [45] Thomas A Hopf et al. (2017) Mutation effects predicted from sequence co-variation. Nat. Biotechnol., 35(2):128-135. doi:10.1038/nbt.3769 – reference: [46] Adam J Riesselman et al. (2019) Deep generative models of genetic variation capture the effects of mutations. Nat. Methods, 15(10):816-822. doi:10.1038/s41592-018-0138-4 – reference: [22] Alexander Schug et al. (2009) High-resolution protein complexes from integrating genomic information with molecular simulation. Proc. Natl. Acad. Sci. U. S. A., 106(52):22124-22129. doi:10.1073/pnas.0912100106 – reference: [62] Benjamin Schubert et al. (2019) Genome-wide discovery of epistatic loci affecting antibiotic resistance in Neisseria gonorrhoeae using evolutionary couplings. Nat. Microbiol., 4(2):328-338 – reference: [34] Caleb Weinreb et al. (2016) 3D RNA and functional interactions from evolutionary couplings. Cell, 165(4):963-975. doi:10.1016/j.cell.2016.03.030 – reference: [53] Adam J Hockenberry and Claus O Wilke. Phylogenetic weighting does little to improve the accuracy of evolutionary coupling analyses. Entropy, 21(10):1000. doi:10.3390/e21101000 – reference: [43] Matteo Figliuzzi et al. (2016) Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase TEM-1. Mol. Biol. Evol., 33(1):268-280. doi:10.1093/molbev/msv211 – reference: [47] Michael Schmidt and Kay Hamacher. (2017) Three-body interactions improve contact prediction within direct-coupling analysis. Phys. Rev. E, 96(5-1):052405. doi:10.1103/PhysRevE.96.052405 – reference: [19] Sohl-Dickstein, J. et al. (2011) Minimum probability flow learning. ICML – reference: [59] Marcin J Skwark et al. (2017) Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis. PLoS Genet., 13(2):e1006508. doi:10.1371/journal.pgen.1006508 – reference: [42] Jaclyn K Mann et al. (2014) The fitness landscape of HIV-1 Gag: Aadvanced modeling approaches and validation of model predictions by in vitro testing. PLoS Comput. Biol., 10(8):e1003776. doi:10.1371/journal.pcbi.1003776 – reference: [37] Nathan J Rollins et al. (2019) Inferring protein 3D structure from deep mutation scans. Nat. Genet., 51(7):1170-1176. doi:10.1038/s41588-019-0432-9 – reference: [54] Edwin R Horta et al. (2019) Toward inferring Potts models for phylogenetically correlated sequence data. Entropy, 21(11):1090. doi:10.3390/e21111090 – reference: [56] Rodrigo Cofre et al. (2019) A comparison of the maximum entropy principle across biological spatial scales. Entropy, 21(10):1009. doi:10.3390/e21101009 – reference: [10] Magnus Ekeberg et al. (2013) Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models. Phys. Rev. E, 87(1):012707. doi:10.1103/PhysRevE.87.012707 – reference: [17] David T Jones et al. (2012) PSICOV: Precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics, 28(2):184-190. doi:10.1093/bioinformatics/btr638 – reference: [33] Eleonora De Leonardis et al. (2015) Direct-coupling analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction. Nucleic Acids Res., 43(21):10444-10455. doi:10.1093/nar/gkv932 – reference: [41] Andrew L Ferguson et al. (2013) Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design. Immunity, 38(3):606-617. doi:10.1016/j.immuni.2012.11.022 – reference: [7] Matteo Figliuzzi et al. (2018) How pairwise coevolutionary models capture the collective residue variability in proteins? Mol. Biol. Evol., 35(4):1018-1027. doi:10.1093/molbev/msy007 – reference: [51] Saulo HP de Oliveria et al. (2017) Comparing co-evolution methods and their application to template-free protein structure prediction. Bioinformatics, 33(3):373-381. doi:10.1093/bioinformatics/btw618 – reference: [15] Simona Cocco and Remi Monasson (2011) Adaptive cluster expansion for the inverse Ising problem: convergence, algorithms and tests. J. Stat. Phys., 147(2):252-314. doi:10.1007/s10955-012-0463-4 – reference: [13] Simona Cocco et al. (2018) Inverse statistical physics of protein sequences: key issues review. Rep. Prog. Phys., 81(3):032601. doi:10.1088/1361-6633/aa9965 – reference: [2] Philip R Kensche et al. (2008) Practical and theoretical advances in predicting the function of a protein by its phylogenetic distribution.J. R. Soc. Interface, 5(19):151-170. doi:10.1098/rsif.2007.1047 – reference: [16] J. P. Barton et al. (2016) ACE: Adaptive cluster expansion for maximum entropy graphical model inference. Bioinformatics, 32(20):3089-3097. doi:10.1093/bioinformatics/btw328 – reference: [66] Michiaki Hamada. (2014) Fighting against uncertainty: an essential issue in bioinformatics. Brief. , 15(5):748-767. doi:10.1093/bib/bbt038 – reference: [65] Daniel Barker and Mark Pegal. (2005) Predicting functional gene links from phylogenetic-statistical analyses of whole genomes. PLoS. Comput. Biol., 1(1):e3. doi:10.1371/journal.pcbi.0010003 – reference: [8] Julian Besag. (1975) Statistical analysis of non-lattice data. J. Roy. Stat. Soc. Ser. D, 24(3):179-195. doi:10.2307/2987782 – reference: [4] Elad Schneidman et al. (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087):1007-1012. doi:10.1038/nature04701 – reference: [14] Simona Cocco and Remi Monasson (2011) Adaptive cluster expansion for inferring Boltzmann machines with noisy data. Phys. Rev. Lett., 106(9):090601. doi:10.1103/PhysRevLett.106.090601 – reference: [60] Santeri Puranen et al. (2018) SuperDCA for genome-wide epistasis analysis. Microb. Genom., 4(6):e000184. doi:10.1099/mgen.0.000184 – reference: [57] Takamitsu Watanabe et al. (2013) A pairwise maximum entropy model accurately describes resting-state human brain networks. Nat. Commun., 4:1370. doi:10.1038/ncomms2388 – reference: [18] Carlo Baldassi et al. (2014) Fast and accurate multivariate Gaussian modeling of protein families: Predicting residue contacts and protein-interaction partners. PLoS ONE, 9(3):e92721. doi:10.1371/journal.pone.0092721 – reference: [44] R. R. Cheng et al. (2016) Connecting the sequence-space of bacterial signaling proteins to phenotypes using coevolutionary landscapes. Mol. Biol. Evol., 33(12):3054-3064. doi:10.1093/molbev/msw188 – reference: [1] Matteo Pellegrini et al. (1999) Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc. Natl. Acad. Sci. U. S. A., 96(8):4285-4288. doi:10.1073/pnas.96.8.4285 – reference: [27] Thomas Gueudre et al. (2016) Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis. Proc. Natl. Acad. Sci. U. S. A., 113(43):12180-12185. doi:10.1073/pnas.1607570113 – reference: [30] Joanna I Sulkowska et al. (2012) Genomics-aided structure prediction. Proc. Natl. Acad. Sci. U. S. A., 109(26):10340-10345. doi:10.1073/pnas.1207864109 – reference: [63] Edward D Lee et al. (2015) Statistical mechanics of the US supreme court. J. Stat. Phys., 160:275-301 – reference: [21] Martin weigt et al. (2009) Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. U. S. A., 106(1):67-72. doi:10.1073/pnas.0805923106 – reference: [36] Sergey Ovchinnikov et al. (2017) Protein structure determination using metagenome sequence data. Science, 355(6322):294-298. doi:10.1126/science.aah4043 |
SSID | ssj0003237715 |
Score | 1.7864211 |
Snippet | ... |
SourceID | nii jstage |
SourceType | Publisher |
StartPage | 3 |
Title | Applications of the inverse Ising problem to biological data analysis |
URI | https://www.jstage.jst.go.jp/article/jsbibr/1/1/1_jsbibr.2020.1/_article/-char/en https://cir.nii.ac.jp/crid/1390004222631829760 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | JSBi Bioinformatics Review, 2020, Vol.1(1), pp.3-11 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYGvOwFMcE0Bkx-4A1lcxzHiR-7CQRI3cs6ibfIdpwpRUoRTV944LdzZ6dNIpBgqJLVuNFJ8Zfefefz3RFyilasNMpETMQiEhbcHR1bGymbObB4Mq78hv70t7z8K65v0pu-X57PLmnNd_vwYl7Je1CFOcAVs2T_A9mNUJiA74AvjIAwjG_CeDKIPq-D_XWDBy3c2dUy5Jn7fjHIMEO5pRCV0S2mYoVyJCN6-udnje0pu3KqvoTzOHpwsbpdNfqfPpstV7d6qYe7Bpz1uhxsMPa2HJ0KHQsOpsHrIC6woiXjY4X57L0Iyi8ZWNGgQZ_rZ54IVNBLUxusxsphrrdEm_OBGGNjmeeecovscHABsC3H9LHfP0t4kmVx2tXhRLk_RlKBUcyBX2PhhK2mrgekYbZHdju2TycBuk_kw1zvk_MhbHRRUYCNdrBRDxvtYKPtgvawUYSNrmE7ILOL89mvy6jrZhHNlWBRqYRTqa5i1HPGJZlWmNarFbNpViVlJg3PHdAnV-oyLV0upZJlqsH_raTNk-Qz2W4WjftCqIaVqbTIVcWMiOEezWVlDXh-OXeW5YdkEh69uAsVS4ruDS3CChWx_3QXuFxwtb4Fk_3gv3VITmDVClvjCF4C88XiuAQTwIHBsq-v_H5EPqLgsFl1TLbb-5U7AfrWmm8exyfx10pC |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+the+inverse+Ising+problem+to+biological+data+analysis&rft.jtitle=JSBi+Bioinformatics+Review&rft.au=Fukunaga+Tsukasa&rft.date=2020&rft.pub=Japanese+Society+for+Bioinformatics&rft.eissn=2435-7022&rft.volume=1&rft.issue=1&rft.spage=3&rft.epage=11&rft_id=info:doi/10.11234%2Fjsbibr.2020.1&rft.externalDocID=130007923106 |