A method for direct exposure assessment of fluorinated solvents on mammalian cells

Fluorinated solvents have been studied as materials for supplying oxygen to cells due to their high oxygen solubility. In recent years, there has been widespread concern about the toxicity of perfluoroalkyl compounds (PFAS), and research has mainly focused on the toxicity, bioaccumulation, and effec...

Full description

Saved in:
Bibliographic Details
Published inSEISAN KENKYU Vol. 77; no. 2; pp. 117 - 121
Main Authors MIYAJIMA, Hiroki, HATANAKA, Kenichi, KASUYA, Maria Carmelita, IKEUCHI, Yoshiho
Format Journal Article
LanguageJapanese
Published Institute of Industrial Science The University of Tokyo 01.05.2025
Online AccessGet full text
ISSN0037-105X
1881-2058
DOI10.11188/seisankenkyu.77.117

Cover

Abstract Fluorinated solvents have been studied as materials for supplying oxygen to cells due to their high oxygen solubility. In recent years, there has been widespread concern about the toxicity of perfluoroalkyl compounds (PFAS), and research has mainly focused on the toxicity, bioaccumulation, and effects on living organisms of PFAS dissolved in water, but the effects on direct exposure to cells have not been examined. In this article, we propose a method for assessing the effects of direct exposure of PRAS to mammalian cells. We report the effects of direct cell exposure of two PFAS, dodecafluoroheptanol and perfluorodecalin, which have oxygen supplying ability.
AbstractList Fluorinated solvents have been studied as materials for supplying oxygen to cells due to their high oxygen solubility. In recent years, there has been widespread concern about the toxicity of perfluoroalkyl compounds (PFAS), and research has mainly focused on the toxicity, bioaccumulation, and effects on living organisms of PFAS dissolved in water, but the effects on direct exposure to cells have not been examined. In this article, we propose a method for assessing the effects of direct exposure of PRAS to mammalian cells. We report the effects of direct cell exposure of two PFAS, dodecafluoroheptanol and perfluorodecalin, which have oxygen supplying ability.
Author IKEUCHI, Yoshiho
MIYAJIMA, Hiroki
KASUYA, Maria Carmelita
HATANAKA, Kenichi
Author_xml – sequence: 1
  fullname: MIYAJIMA, Hiroki
– sequence: 1
  fullname: HATANAKA, Kenichi
– sequence: 1
  fullname: KASUYA, Maria Carmelita
– sequence: 1
  fullname: IKEUCHI, Yoshiho
BookMark eNpNkMFKAzEYhINUsNa-gYe8wNYk290kx1KsCoIgPXhb_s3-sWmzSUm2Yt_eFUW8zMA3wxzmmkxCDEjILWcLzrlSdxldhnDAcDifFlKOVF6Q6ZjwQrBKTciUsVIWnFVvV2Ses2uZEFJVTOspeV3RHodd7KiNiXYuoRkofh5jPiWkkDPm3GMYaLTU-lNMLsCAHc3Rf4w40xhoD30P3kGgBr3PN-TSgs84__UZ2W7ut-vH4vnl4Wm9ei72mi0Lo1tTC9UqWWurgbVoatVhK8FiqUHVJZZ8NC4MM7IGZUTJLdZKWFUvK17OyOZndp8HeMfmmFwP6dxAGpzx2Py_pZGyEd8yfvNXMDtIDYbyC5W6Zuo
ContentType Journal Article
Copyright 2025 Institute of Industrial Science The University of Tokyo
Copyright_xml – notice: 2025 Institute of Industrial Science The University of Tokyo
DOI 10.11188/seisankenkyu.77.117
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1881-2058
EndPage 121
ExternalDocumentID article_seisankenkyu_77_2_77_117_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j904-c9bc628b8769f9a0bec68deb7afe39a863e31a8612c0c76a8c231fe682f864513
ISSN 0037-105X
IngestDate Wed Sep 03 06:30:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j904-c9bc628b8769f9a0bec68deb7afe39a863e31a8612c0c76a8c231fe682f864513
OpenAccessLink https://www.jstage.jst.go.jp/article/seisankenkyu/77/2/77_117/_article/-char/en
PageCount 5
ParticipantIDs jstage_primary_article_seisankenkyu_77_2_77_117_article_char_en
PublicationCentury 2000
PublicationDate 2025/05/01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025/05/01
  day: 01
PublicationDecade 2020
PublicationTitle SEISAN KENKYU
PublicationTitleAlternate SEISAN KENKYU
PublicationYear 2025
Publisher Institute of Industrial Science The University of Tokyo
Publisher_xml – name: Institute of Industrial Science The University of Tokyo
References 2) (a) Clark, L.C., Gollan, F. (1966): Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure.Science 152, 1755-1756. (b) Okabe, R., Chen-Yoshikawa, T.F., Yoneyama, Y., et al. (2021): Mammalian enteral ventilation ameliorates respiratory failure. Med 2, 773-783.
1) Lowe, K.C. (1999): Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev. 13, 171-184.
6) Miyajima, H., Kasuya, M.C., Hatanaka, K. (2014): Dodecafluoroheptanol: Oxygen reservoir for the culture of mouse melanoma B16 cells. J. Fluor. Chem. 163, 46-49.
5) Kasuya, M.C.Z., Wen, X., Hatanaka, K., Akashi, K. (2011): Fluorous solvent for cell culture. J. Fluor. Chem. 132, 978-981.
3) (a) Khattak, S.F., Chin, K.S., Bhatia, S.R. Roberts, S.C. (2007): Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng. 96, 156-166. (b) Rappaport, C., Rensch, Y., Abbasi, M., et al. (2002): New perfluorocarbon system for multilayer growth of anchorage-dependent mammalian cells. Biotechniques32, 142-151. (c) Ando, J., Albelda, S.M., Levine, E.M. (1991): Culture of human adult endothelial cells on liquid-liquid interfaces: a new approach to the study of cell-matrix interactions. In Vitro Cell Dev. Biol. 27, 525-532. (d) Sanfilippo, B., Ciardiello, F., Salomon, D.S., Kidwell, W.R. (1988): Growth of cells on a perfluorocarbon-medium interphase: a quantitative assay for anchorage-independent cell growth. In Vitro Cell Dev Biol. 24, 71-78. (e) Fu, X., Ohta, S., Kamihira, M., Sakai, Y., Ito, T. (2019): Size-Controlled Preparation of Microsized Perfluorocarbon Emulsions as Oxygen Carriers via the Shirasu Porous Glass Membrane Emulsification Technique. Langmuir 35, 4094-4100. (f) Lee, S.H., Park, H.S., Yang, Y., et al. (2018): Improvement of islet function and survival by integration of perfluorodecalin into microcapsules in vivo and in vitro. J. Tissue Eng. Regen. Med. 12, 2110-2122. (g) Wrobeln, A., Laudien, J., Groß-Heitfeld, C., et al. (2017): Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility. Eur. J. Pharm. Biopharm. 115, 52-64. (h) Lee, H.Y., Kim, H.W., Lee, J.H., Oh, S.H. (2015): Controlling oxygen release from hollow microparticles for prolonged cell survival under hypoxic environment Biomaterials 53, 583-591. (i) Hanga, M.P., Murasiewicz, H., Pacek, A.W., Nienow, A.W., Coopman, K., Hewitt, C.J. (2017): Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. J. Chem. Technol. Biotechnol. 92, 1577-1589. (j) Pilarek, M., Grabowska, I., Senderek, I., et al. (2014): Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds. Bioprocess Biosyst Eng, 37, 1707-1715. (k) Kwon, Y.J., Yu, H., Peng, C.A. (2001): Enhanced retroviral transduction of 293 cells cultured on liquid-liquid interfaces. Biotechnol. Bioeng, 72, 331-338. (l) Shiba, Y., Ohshima, T., Sato, M. (1998): Growth and morphology of anchorage-dependent animal cells in a liquid/liquid interface system. Biotechnol Bioeng,57, 583-589.
8) Kasuya, M.C., Hatanaka, K. (2019): Cytotoxicity and cellular uptake of perfluorodecanoic acid. J. Fluor. Chem. 221, 56-60.
4) (a) Sykłowska-Baranek, K., Pilarek, M., Cichosz, M., Pietrosiuk, (2014): Liquid perfluorodecalin application for in situ extraction and enhanced naphthoquinones production in Arnebia euchroma cell suspension cultures. A. Appl. Biochem Biotechnol, 172, 2618-2627. (b) Tamimi, F., Comeau, P., Le Nihouannen, D., et al. (2013): Perfluorodecalin and bone regeneration. Eur. Cell Mater. 25, 22-36. (c) Pilarek, M., Grabowska, I., Ciemerych, M.A., Dąbkowska, K., Szewczyk, K.W. (2013): Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnol Lett, 35, 1387-1394.
7) (a) Kleszczyński, K., Gardzielewski, P., Mulkiewicz, E., Stepnowski, P., Składanowski, A.C. (2007): Analysis of structure-cytotoxicity in vitro relationship (SAR) for perfluorinated carboxylic acids. Toxicol In Vitro, 21, 1206-1211. (b) Hu, W., Jones, P.D., DeCoen, W., et al. (2003): Alterations in cell membrane properties caused by perfluorinated compounds. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135, 77-88. (c) Kasuya, M.C., Hatanaka, K. (2016): Cytotoxicity and cellular uptake of perfluorocarboxylic acids. J. Fluor. Chem. 188, 1-4.
References_xml – reference: 2) (a) Clark, L.C., Gollan, F. (1966): Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure.Science 152, 1755-1756. (b) Okabe, R., Chen-Yoshikawa, T.F., Yoneyama, Y., et al. (2021): Mammalian enteral ventilation ameliorates respiratory failure. Med 2, 773-783.
– reference: 6) Miyajima, H., Kasuya, M.C., Hatanaka, K. (2014): Dodecafluoroheptanol: Oxygen reservoir for the culture of mouse melanoma B16 cells. J. Fluor. Chem. 163, 46-49.
– reference: 7) (a) Kleszczyński, K., Gardzielewski, P., Mulkiewicz, E., Stepnowski, P., Składanowski, A.C. (2007): Analysis of structure-cytotoxicity in vitro relationship (SAR) for perfluorinated carboxylic acids. Toxicol In Vitro, 21, 1206-1211. (b) Hu, W., Jones, P.D., DeCoen, W., et al. (2003): Alterations in cell membrane properties caused by perfluorinated compounds. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135, 77-88. (c) Kasuya, M.C., Hatanaka, K. (2016): Cytotoxicity and cellular uptake of perfluorocarboxylic acids. J. Fluor. Chem. 188, 1-4.
– reference: 3) (a) Khattak, S.F., Chin, K.S., Bhatia, S.R. Roberts, S.C. (2007): Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng. 96, 156-166. (b) Rappaport, C., Rensch, Y., Abbasi, M., et al. (2002): New perfluorocarbon system for multilayer growth of anchorage-dependent mammalian cells. Biotechniques32, 142-151. (c) Ando, J., Albelda, S.M., Levine, E.M. (1991): Culture of human adult endothelial cells on liquid-liquid interfaces: a new approach to the study of cell-matrix interactions. In Vitro Cell Dev. Biol. 27, 525-532. (d) Sanfilippo, B., Ciardiello, F., Salomon, D.S., Kidwell, W.R. (1988): Growth of cells on a perfluorocarbon-medium interphase: a quantitative assay for anchorage-independent cell growth. In Vitro Cell Dev Biol. 24, 71-78. (e) Fu, X., Ohta, S., Kamihira, M., Sakai, Y., Ito, T. (2019): Size-Controlled Preparation of Microsized Perfluorocarbon Emulsions as Oxygen Carriers via the Shirasu Porous Glass Membrane Emulsification Technique. Langmuir 35, 4094-4100. (f) Lee, S.H., Park, H.S., Yang, Y., et al. (2018): Improvement of islet function and survival by integration of perfluorodecalin into microcapsules in vivo and in vitro. J. Tissue Eng. Regen. Med. 12, 2110-2122. (g) Wrobeln, A., Laudien, J., Groß-Heitfeld, C., et al. (2017): Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility. Eur. J. Pharm. Biopharm. 115, 52-64. (h) Lee, H.Y., Kim, H.W., Lee, J.H., Oh, S.H. (2015): Controlling oxygen release from hollow microparticles for prolonged cell survival under hypoxic environment Biomaterials 53, 583-591. (i) Hanga, M.P., Murasiewicz, H., Pacek, A.W., Nienow, A.W., Coopman, K., Hewitt, C.J. (2017): Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. J. Chem. Technol. Biotechnol. 92, 1577-1589. (j) Pilarek, M., Grabowska, I., Senderek, I., et al. (2014): Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds. Bioprocess Biosyst Eng, 37, 1707-1715. (k) Kwon, Y.J., Yu, H., Peng, C.A. (2001): Enhanced retroviral transduction of 293 cells cultured on liquid-liquid interfaces. Biotechnol. Bioeng, 72, 331-338. (l) Shiba, Y., Ohshima, T., Sato, M. (1998): Growth and morphology of anchorage-dependent animal cells in a liquid/liquid interface system. Biotechnol Bioeng,57, 583-589.
– reference: 4) (a) Sykłowska-Baranek, K., Pilarek, M., Cichosz, M., Pietrosiuk, (2014): Liquid perfluorodecalin application for in situ extraction and enhanced naphthoquinones production in Arnebia euchroma cell suspension cultures. A. Appl. Biochem Biotechnol, 172, 2618-2627. (b) Tamimi, F., Comeau, P., Le Nihouannen, D., et al. (2013): Perfluorodecalin and bone regeneration. Eur. Cell Mater. 25, 22-36. (c) Pilarek, M., Grabowska, I., Ciemerych, M.A., Dąbkowska, K., Szewczyk, K.W. (2013): Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnol Lett, 35, 1387-1394.
– reference: 8) Kasuya, M.C., Hatanaka, K. (2019): Cytotoxicity and cellular uptake of perfluorodecanoic acid. J. Fluor. Chem. 221, 56-60.
– reference: 1) Lowe, K.C. (1999): Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev. 13, 171-184.
– reference: 5) Kasuya, M.C.Z., Wen, X., Hatanaka, K., Akashi, K. (2011): Fluorous solvent for cell culture. J. Fluor. Chem. 132, 978-981.
SSID ssib022785099
ssj0050288
ssib020012815
ssib046652600
ssib000955145
ssib021068994
ssib002484522
Score 2.3891907
Snippet Fluorinated solvents have been studied as materials for supplying oxygen to cells due to their high oxygen solubility. In recent years, there has been...
SourceID jstage
SourceType Publisher
StartPage 117
Title A method for direct exposure assessment of fluorinated solvents on mammalian cells
URI https://www.jstage.jst.go.jp/article/seisankenkyu/77/2/77_117/_article/-char/en
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX SEISAN KENKYU, 2025/05/01, Vol.77(2), pp.117-121
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKcoED4ilgAfnADaU0TuLYJ2StitqNthJsKrWnyHmpabcN2rYrLf-R_8Q4Tlwv6oGFi9s4j9aZLzPfODNjhD4y4qWs4PCkZa7v-JIFDg8K32EkzdNcUl42K89dTOho6p_Pglmv98uKWtrv0n7282heyb9IFfpAripL9h6SNReFDvgO8oUWJAztX8lYtAtAN7GC2jipkv31tnkrYGpuKkJYXu1VqJ1UBBP-1E2T2AaSX8v1Wk91qCn8rc1VL4fjSzH5FA0n0XxqBDOei_PxhWhMVnVdryoDDBGLiYhEm-1TZQuzKwLlPRdtalAlVZTJulDVwQ0wo-H0bDRu7EG9XVSL2p6NIMEh9k97qHaEg7X4SKeo4sWfESdxvbqtbQ3thWAagpm2T1opM-aC3HWJ905rt4u_VJbzrFWwq3NBW2vu6vzrI4aCqeyHLfyC3KyKzep23w_Dvjn5TgnuVsCJfXQShglRDZySdAeoTDkA5gP0kIRhEzUQfbPYLlf09E41OVXPvtsm-rWm2Q_OOAVv2KhLlbQM9M6wT5_SQC0v0BGPAKiiJh7tLWwzRdVQPx8ZKHCuJXggXfRiQ6jip-hJ6wlhoQf1DPWW8jl6bNXHfIG-C6wBjgHgWAMcdwDHB4DjusQWwHEHcFxvsAE4bgD-EsVfh_HZyGkXAXGWfOA7GU8zSlgKRpuXXA5A5VCWF2koy8LjklE1iQ8fLskGWUgly8BhKQvKSMmoH7jeK3SyqTfFa4TLAS1TmWcyzblPvZIXPPMIH3DoIDKnb9AXfT-SH7rQS3Jfub_97yucokeHp-odOtld74v3wHp36YcGS78BuRyxNA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+direct+exposure+assessment+of+fluorinated+solvents+on+mammalian+cells&rft.jtitle=SEISAN+KENKYU&rft.au=MIYAJIMA%2C+Hiroki&rft.au=HATANAKA%2C+Kenichi&rft.au=KASUYA%2C+Maria+Carmelita&rft.au=IKEUCHI%2C+Yoshiho&rft.date=2025-05-01&rft.pub=Institute+of+Industrial+Science+The+University+of+Tokyo&rft.issn=0037-105X&rft.eissn=1881-2058&rft.volume=77&rft.issue=2&rft.spage=117&rft.epage=121&rft_id=info:doi/10.11188%2Fseisankenkyu.77.117&rft.externalDocID=article_seisankenkyu_77_2_77_117_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-105X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-105X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-105X&client=summon