A method for direct exposure assessment of fluorinated solvents on mammalian cells
Fluorinated solvents have been studied as materials for supplying oxygen to cells due to their high oxygen solubility. In recent years, there has been widespread concern about the toxicity of perfluoroalkyl compounds (PFAS), and research has mainly focused on the toxicity, bioaccumulation, and effec...
Saved in:
Published in | SEISAN KENKYU Vol. 77; no. 2; pp. 117 - 121 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Japanese |
Published |
Institute of Industrial Science The University of Tokyo
01.05.2025
|
Online Access | Get full text |
ISSN | 0037-105X 1881-2058 |
DOI | 10.11188/seisankenkyu.77.117 |
Cover
Abstract | Fluorinated solvents have been studied as materials for supplying oxygen to cells due to their high oxygen solubility. In recent years, there has been widespread concern about the toxicity of perfluoroalkyl compounds (PFAS), and research has mainly focused on the toxicity, bioaccumulation, and effects on living organisms of PFAS dissolved in water, but the effects on direct exposure to cells have not been examined. In this article, we propose a method for assessing the effects of direct exposure of PRAS to mammalian cells. We report the effects of direct cell exposure of two PFAS, dodecafluoroheptanol and perfluorodecalin, which have oxygen supplying ability. |
---|---|
AbstractList | Fluorinated solvents have been studied as materials for supplying oxygen to cells due to their high oxygen solubility. In recent years, there has been widespread concern about the toxicity of perfluoroalkyl compounds (PFAS), and research has mainly focused on the toxicity, bioaccumulation, and effects on living organisms of PFAS dissolved in water, but the effects on direct exposure to cells have not been examined. In this article, we propose a method for assessing the effects of direct exposure of PRAS to mammalian cells. We report the effects of direct cell exposure of two PFAS, dodecafluoroheptanol and perfluorodecalin, which have oxygen supplying ability. |
Author | IKEUCHI, Yoshiho MIYAJIMA, Hiroki KASUYA, Maria Carmelita HATANAKA, Kenichi |
Author_xml | – sequence: 1 fullname: MIYAJIMA, Hiroki – sequence: 1 fullname: HATANAKA, Kenichi – sequence: 1 fullname: KASUYA, Maria Carmelita – sequence: 1 fullname: IKEUCHI, Yoshiho |
BookMark | eNpNkMFKAzEYhINUsNa-gYe8wNYk290kx1KsCoIgPXhb_s3-sWmzSUm2Yt_eFUW8zMA3wxzmmkxCDEjILWcLzrlSdxldhnDAcDifFlKOVF6Q6ZjwQrBKTciUsVIWnFVvV2Ses2uZEFJVTOspeV3RHodd7KiNiXYuoRkofh5jPiWkkDPm3GMYaLTU-lNMLsCAHc3Rf4w40xhoD30P3kGgBr3PN-TSgs84__UZ2W7ut-vH4vnl4Wm9ei72mi0Lo1tTC9UqWWurgbVoatVhK8FiqUHVJZZ8NC4MM7IGZUTJLdZKWFUvK17OyOZndp8HeMfmmFwP6dxAGpzx2Py_pZGyEd8yfvNXMDtIDYbyC5W6Zuo |
ContentType | Journal Article |
Copyright | 2025 Institute of Industrial Science The University of Tokyo |
Copyright_xml | – notice: 2025 Institute of Industrial Science The University of Tokyo |
DOI | 10.11188/seisankenkyu.77.117 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1881-2058 |
EndPage | 121 |
ExternalDocumentID | article_seisankenkyu_77_2_77_117_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 OK1 RJT |
ID | FETCH-LOGICAL-j904-c9bc628b8769f9a0bec68deb7afe39a863e31a8612c0c76a8c231fe682f864513 |
ISSN | 0037-105X |
IngestDate | Wed Sep 03 06:30:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j904-c9bc628b8769f9a0bec68deb7afe39a863e31a8612c0c76a8c231fe682f864513 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/seisankenkyu/77/2/77_117/_article/-char/en |
PageCount | 5 |
ParticipantIDs | jstage_primary_article_seisankenkyu_77_2_77_117_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025/05/01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025/05/01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | SEISAN KENKYU |
PublicationTitleAlternate | SEISAN KENKYU |
PublicationYear | 2025 |
Publisher | Institute of Industrial Science The University of Tokyo |
Publisher_xml | – name: Institute of Industrial Science The University of Tokyo |
References | 2) (a) Clark, L.C., Gollan, F. (1966): Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure.Science 152, 1755-1756. (b) Okabe, R., Chen-Yoshikawa, T.F., Yoneyama, Y., et al. (2021): Mammalian enteral ventilation ameliorates respiratory failure. Med 2, 773-783. 1) Lowe, K.C. (1999): Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev. 13, 171-184. 6) Miyajima, H., Kasuya, M.C., Hatanaka, K. (2014): Dodecafluoroheptanol: Oxygen reservoir for the culture of mouse melanoma B16 cells. J. Fluor. Chem. 163, 46-49. 5) Kasuya, M.C.Z., Wen, X., Hatanaka, K., Akashi, K. (2011): Fluorous solvent for cell culture. J. Fluor. Chem. 132, 978-981. 3) (a) Khattak, S.F., Chin, K.S., Bhatia, S.R. Roberts, S.C. (2007): Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng. 96, 156-166. (b) Rappaport, C., Rensch, Y., Abbasi, M., et al. (2002): New perfluorocarbon system for multilayer growth of anchorage-dependent mammalian cells. Biotechniques32, 142-151. (c) Ando, J., Albelda, S.M., Levine, E.M. (1991): Culture of human adult endothelial cells on liquid-liquid interfaces: a new approach to the study of cell-matrix interactions. In Vitro Cell Dev. Biol. 27, 525-532. (d) Sanfilippo, B., Ciardiello, F., Salomon, D.S., Kidwell, W.R. (1988): Growth of cells on a perfluorocarbon-medium interphase: a quantitative assay for anchorage-independent cell growth. In Vitro Cell Dev Biol. 24, 71-78. (e) Fu, X., Ohta, S., Kamihira, M., Sakai, Y., Ito, T. (2019): Size-Controlled Preparation of Microsized Perfluorocarbon Emulsions as Oxygen Carriers via the Shirasu Porous Glass Membrane Emulsification Technique. Langmuir 35, 4094-4100. (f) Lee, S.H., Park, H.S., Yang, Y., et al. (2018): Improvement of islet function and survival by integration of perfluorodecalin into microcapsules in vivo and in vitro. J. Tissue Eng. Regen. Med. 12, 2110-2122. (g) Wrobeln, A., Laudien, J., Groß-Heitfeld, C., et al. (2017): Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility. Eur. J. Pharm. Biopharm. 115, 52-64. (h) Lee, H.Y., Kim, H.W., Lee, J.H., Oh, S.H. (2015): Controlling oxygen release from hollow microparticles for prolonged cell survival under hypoxic environment Biomaterials 53, 583-591. (i) Hanga, M.P., Murasiewicz, H., Pacek, A.W., Nienow, A.W., Coopman, K., Hewitt, C.J. (2017): Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. J. Chem. Technol. Biotechnol. 92, 1577-1589. (j) Pilarek, M., Grabowska, I., Senderek, I., et al. (2014): Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds. Bioprocess Biosyst Eng, 37, 1707-1715. (k) Kwon, Y.J., Yu, H., Peng, C.A. (2001): Enhanced retroviral transduction of 293 cells cultured on liquid-liquid interfaces. Biotechnol. Bioeng, 72, 331-338. (l) Shiba, Y., Ohshima, T., Sato, M. (1998): Growth and morphology of anchorage-dependent animal cells in a liquid/liquid interface system. Biotechnol Bioeng,57, 583-589. 8) Kasuya, M.C., Hatanaka, K. (2019): Cytotoxicity and cellular uptake of perfluorodecanoic acid. J. Fluor. Chem. 221, 56-60. 4) (a) Sykłowska-Baranek, K., Pilarek, M., Cichosz, M., Pietrosiuk, (2014): Liquid perfluorodecalin application for in situ extraction and enhanced naphthoquinones production in Arnebia euchroma cell suspension cultures. A. Appl. Biochem Biotechnol, 172, 2618-2627. (b) Tamimi, F., Comeau, P., Le Nihouannen, D., et al. (2013): Perfluorodecalin and bone regeneration. Eur. Cell Mater. 25, 22-36. (c) Pilarek, M., Grabowska, I., Ciemerych, M.A., Dąbkowska, K., Szewczyk, K.W. (2013): Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnol Lett, 35, 1387-1394. 7) (a) Kleszczyński, K., Gardzielewski, P., Mulkiewicz, E., Stepnowski, P., Składanowski, A.C. (2007): Analysis of structure-cytotoxicity in vitro relationship (SAR) for perfluorinated carboxylic acids. Toxicol In Vitro, 21, 1206-1211. (b) Hu, W., Jones, P.D., DeCoen, W., et al. (2003): Alterations in cell membrane properties caused by perfluorinated compounds. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135, 77-88. (c) Kasuya, M.C., Hatanaka, K. (2016): Cytotoxicity and cellular uptake of perfluorocarboxylic acids. J. Fluor. Chem. 188, 1-4. |
References_xml | – reference: 2) (a) Clark, L.C., Gollan, F. (1966): Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure.Science 152, 1755-1756. (b) Okabe, R., Chen-Yoshikawa, T.F., Yoneyama, Y., et al. (2021): Mammalian enteral ventilation ameliorates respiratory failure. Med 2, 773-783. – reference: 6) Miyajima, H., Kasuya, M.C., Hatanaka, K. (2014): Dodecafluoroheptanol: Oxygen reservoir for the culture of mouse melanoma B16 cells. J. Fluor. Chem. 163, 46-49. – reference: 7) (a) Kleszczyński, K., Gardzielewski, P., Mulkiewicz, E., Stepnowski, P., Składanowski, A.C. (2007): Analysis of structure-cytotoxicity in vitro relationship (SAR) for perfluorinated carboxylic acids. Toxicol In Vitro, 21, 1206-1211. (b) Hu, W., Jones, P.D., DeCoen, W., et al. (2003): Alterations in cell membrane properties caused by perfluorinated compounds. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135, 77-88. (c) Kasuya, M.C., Hatanaka, K. (2016): Cytotoxicity and cellular uptake of perfluorocarboxylic acids. J. Fluor. Chem. 188, 1-4. – reference: 3) (a) Khattak, S.F., Chin, K.S., Bhatia, S.R. Roberts, S.C. (2007): Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. Biotechnol Bioeng. 96, 156-166. (b) Rappaport, C., Rensch, Y., Abbasi, M., et al. (2002): New perfluorocarbon system for multilayer growth of anchorage-dependent mammalian cells. Biotechniques32, 142-151. (c) Ando, J., Albelda, S.M., Levine, E.M. (1991): Culture of human adult endothelial cells on liquid-liquid interfaces: a new approach to the study of cell-matrix interactions. In Vitro Cell Dev. Biol. 27, 525-532. (d) Sanfilippo, B., Ciardiello, F., Salomon, D.S., Kidwell, W.R. (1988): Growth of cells on a perfluorocarbon-medium interphase: a quantitative assay for anchorage-independent cell growth. In Vitro Cell Dev Biol. 24, 71-78. (e) Fu, X., Ohta, S., Kamihira, M., Sakai, Y., Ito, T. (2019): Size-Controlled Preparation of Microsized Perfluorocarbon Emulsions as Oxygen Carriers via the Shirasu Porous Glass Membrane Emulsification Technique. Langmuir 35, 4094-4100. (f) Lee, S.H., Park, H.S., Yang, Y., et al. (2018): Improvement of islet function and survival by integration of perfluorodecalin into microcapsules in vivo and in vitro. J. Tissue Eng. Regen. Med. 12, 2110-2122. (g) Wrobeln, A., Laudien, J., Groß-Heitfeld, C., et al. (2017): Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility. Eur. J. Pharm. Biopharm. 115, 52-64. (h) Lee, H.Y., Kim, H.W., Lee, J.H., Oh, S.H. (2015): Controlling oxygen release from hollow microparticles for prolonged cell survival under hypoxic environment Biomaterials 53, 583-591. (i) Hanga, M.P., Murasiewicz, H., Pacek, A.W., Nienow, A.W., Coopman, K., Hewitt, C.J. (2017): Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system. J. Chem. Technol. Biotechnol. 92, 1577-1589. (j) Pilarek, M., Grabowska, I., Senderek, I., et al. (2014): Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds. Bioprocess Biosyst Eng, 37, 1707-1715. (k) Kwon, Y.J., Yu, H., Peng, C.A. (2001): Enhanced retroviral transduction of 293 cells cultured on liquid-liquid interfaces. Biotechnol. Bioeng, 72, 331-338. (l) Shiba, Y., Ohshima, T., Sato, M. (1998): Growth and morphology of anchorage-dependent animal cells in a liquid/liquid interface system. Biotechnol Bioeng,57, 583-589. – reference: 4) (a) Sykłowska-Baranek, K., Pilarek, M., Cichosz, M., Pietrosiuk, (2014): Liquid perfluorodecalin application for in situ extraction and enhanced naphthoquinones production in Arnebia euchroma cell suspension cultures. A. Appl. Biochem Biotechnol, 172, 2618-2627. (b) Tamimi, F., Comeau, P., Le Nihouannen, D., et al. (2013): Perfluorodecalin and bone regeneration. Eur. Cell Mater. 25, 22-36. (c) Pilarek, M., Grabowska, I., Ciemerych, M.A., Dąbkowska, K., Szewczyk, K.W. (2013): Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnol Lett, 35, 1387-1394. – reference: 8) Kasuya, M.C., Hatanaka, K. (2019): Cytotoxicity and cellular uptake of perfluorodecanoic acid. J. Fluor. Chem. 221, 56-60. – reference: 1) Lowe, K.C. (1999): Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev. 13, 171-184. – reference: 5) Kasuya, M.C.Z., Wen, X., Hatanaka, K., Akashi, K. (2011): Fluorous solvent for cell culture. J. Fluor. Chem. 132, 978-981. |
SSID | ssib022785099 ssj0050288 ssib020012815 ssib046652600 ssib000955145 ssib021068994 ssib002484522 |
Score | 2.3891907 |
Snippet | Fluorinated solvents have been studied as materials for supplying oxygen to cells due to their high oxygen solubility. In recent years, there has been... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 117 |
Title | A method for direct exposure assessment of fluorinated solvents on mammalian cells |
URI | https://www.jstage.jst.go.jp/article/seisankenkyu/77/2/77_117/_article/-char/en |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | SEISAN KENKYU, 2025/05/01, Vol.77(2), pp.117-121 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKcoED4ilgAfnADaU0TuLYJ2StitqNthJsKrWnyHmpabcN2rYrLf-R_8Q4Tlwv6oGFi9s4j9aZLzPfODNjhD4y4qWs4PCkZa7v-JIFDg8K32EkzdNcUl42K89dTOho6p_Pglmv98uKWtrv0n7282heyb9IFfpAripL9h6SNReFDvgO8oUWJAztX8lYtAtAN7GC2jipkv31tnkrYGpuKkJYXu1VqJ1UBBP-1E2T2AaSX8v1Wk91qCn8rc1VL4fjSzH5FA0n0XxqBDOei_PxhWhMVnVdryoDDBGLiYhEm-1TZQuzKwLlPRdtalAlVZTJulDVwQ0wo-H0bDRu7EG9XVSL2p6NIMEh9k97qHaEg7X4SKeo4sWfESdxvbqtbQ3thWAagpm2T1opM-aC3HWJ905rt4u_VJbzrFWwq3NBW2vu6vzrI4aCqeyHLfyC3KyKzep23w_Dvjn5TgnuVsCJfXQShglRDZySdAeoTDkA5gP0kIRhEzUQfbPYLlf09E41OVXPvtsm-rWm2Q_OOAVv2KhLlbQM9M6wT5_SQC0v0BGPAKiiJh7tLWwzRdVQPx8ZKHCuJXggXfRiQ6jip-hJ6wlhoQf1DPWW8jl6bNXHfIG-C6wBjgHgWAMcdwDHB4DjusQWwHEHcFxvsAE4bgD-EsVfh_HZyGkXAXGWfOA7GU8zSlgKRpuXXA5A5VCWF2koy8LjklE1iQ8fLskGWUgly8BhKQvKSMmoH7jeK3SyqTfFa4TLAS1TmWcyzblPvZIXPPMIH3DoIDKnb9AXfT-SH7rQS3Jfub_97yucokeHp-odOtld74v3wHp36YcGS78BuRyxNA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+direct+exposure+assessment+of+fluorinated+solvents+on+mammalian+cells&rft.jtitle=SEISAN+KENKYU&rft.au=MIYAJIMA%2C+Hiroki&rft.au=HATANAKA%2C+Kenichi&rft.au=KASUYA%2C+Maria+Carmelita&rft.au=IKEUCHI%2C+Yoshiho&rft.date=2025-05-01&rft.pub=Institute+of+Industrial+Science+The+University+of+Tokyo&rft.issn=0037-105X&rft.eissn=1881-2058&rft.volume=77&rft.issue=2&rft.spage=117&rft.epage=121&rft_id=info:doi/10.11188%2Fseisankenkyu.77.117&rft.externalDocID=article_seisankenkyu_77_2_77_117_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0037-105X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0037-105X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0037-105X&client=summon |