Future vegetation projection by Earth system model and its impact on nomadism

This paper reports the progress of our efforts to apply the livestock weight model developed by ourselves in the past to future scenarios. First, I analyzed the results of future scenario experiments of global climate models that incorporate biogeochemical cycles including ecosystems (e.g., Earth sy...

Full description

Saved in:
Bibliographic Details
Published inJournal of Arid Land Studies Vol. 33; no. 1; pp. 43 - 49
Main Author TACHIIRI, Kaoru
Format Journal Article
LanguageJapanese
Published The Japanese Association for Arid Land Studies 30.06.2023
日本沙漠学会
Subjects
Online AccessGet full text
ISSN0917-6985
2189-1761
DOI10.14976/jals.33.1_43

Cover

Abstract This paper reports the progress of our efforts to apply the livestock weight model developed by ourselves in the past to future scenarios. First, I analyzed the results of future scenario experiments of global climate models that incorporate biogeochemical cycles including ecosystems (e.g., Earth system model), and confirmed that the amount of vegetation around Mongolia will basically be projected to increase, and that the degree of this increase is more emphasized in the high temperature scenarios. This can be attributed to the effects of carbon dioxide fertilization, higher temperatures, and higher nitrogen concentrations by fertilizers etc. Next, to prepare input data for the livestock weight model, I presented the results of attempting downscaling method combining an offline vegetation model and a convolutional neural network. The former method achieved a spatial resolution of 0.5°×0.5°, which could be further refined to 8 km×8 km by the latter method. Although some technical problems remain, the results showed the possibility of obtaining future vegetation distribution with sufficient spatial resolution for analyzing nomadism. Finally, using the Leaf Area Index (LAI) distribution for 2021-2030 with RCP 8.5 scenario derived by the above method, and given the assumption that livestock move to the grid with the largest LAI value in the surrounding area each month, the LAI of the grid where livestock stay was calculated. Here, the average LAI for the year preceding the month of April, when livestock weight drops, was presented. In the future, I intend to further improve the downscaling method and the livestock weight model.
AbstractList This paper reports the progress of our efforts to apply the livestock weight model developed by ourselves in the past to future scenarios. First, I analyzed the results of future scenario experiments of global climate models that incorporate biogeochemical cycles including ecosystems (e.g., Earth system model), and confirmed that the amount of vegetation around Mongolia will basically be projected to increase, and that the degree of this increase is more emphasized in the high temperature scenarios. This can be attributed to the effects of carbon dioxide fertilization, higher temperatures, and higher nitrogen concentrations by fertilizers etc. Next, to prepare input data for the livestock weight model, I presented the results of attempting downscaling method combining an offline vegetation model and a convolutional neural network. The former method achieved a spatial resolution of 0.5°×0.5°, which could be further refined to 8 km×8 km by the latter method. Although some technical problems remain, the results showed the possibility of obtaining future vegetation distribution with sufficient spatial resolution for analyzing nomadism. Finally, using the Leaf Area Index (LAI) distribution for 2021-2030 with RCP 8.5 scenario derived by the above method, and given the assumption that livestock move to the grid with the largest LAI value in the surrounding area each month, the LAI of the grid where livestock stay was calculated. Here, the average LAI for the year preceding the month of April, when livestock weight drops, was presented. In the future, I intend to further improve the downscaling method and the livestock weight model.
This paper reports the progress of our efforts to apply the livestock weight model developed by ourselves in the past to future scenarios. First, I analyzed the results of future scenario experiments of global climate models that incorporate biogeochemical cycles including ecosystems (e.g., Earth system model), and confirmed that the amount of vegetation around Mongolia will basically be projected to increase, and that the degree of this increase is more emphasized in the high temperature scenarios. This can be attributed to the effects of carbon dioxide fertilization, higher temperatures, and higher nitrogen concentrations by fertilizers etc. Next, to prepare input data for the livestock weight model, I presented the results of attempting downscaling method combining an offline vegetation model and a convolutional neural network. The former method achieved a spatial resolution of 0.5°×0.5°, which could be further refined to 8 km×8 km by the latter method. Although some technical problems remain, the results showed the possibility of obtaining future vegetation distribution with sufficient spatial resolution for analyzing nomadism. Finally, using the Leaf Area Index (LAI) distribution for 2021-2030 with RCP 8.5 scenario derived by the above method, and given the assumption that livestock move to the grid with the largest LAI value in the surrounding area each month, the LAI of the grid where livestock stay was calculated. Here, the average LAI for the year preceding the month of April, when livestock weight drops, was presented. In the future, I intend to further improve the downscaling method and the livestock weight model. 過去に自ら開発した家畜体重モデルの将来シナリオへの適用を目的とし,現在取り組んでいることの進捗を報告する.まず,全球気候モデルのうち,生態系などの物質循環を含むモデル(地球システムモデル)の将来シナリオ実験結果を解析し,モンゴル周辺では将来基本的に植生量が増えると予測されていること,その度合いは高温シナリオでより顕著なことを確認した.これは,二酸化炭素の施肥効果,気温上昇,施肥などによる窒素濃度上昇が原因と考えられる.次に家畜体重モデルへの入力データの準備のため,オフライン植生モデルと畳み込みニューラルネットワークとを組み合わせたダウンスケーリング手法の試行結果を示した.前者により0.5°×0.5°の解像度が実現され,さらに後者により8 km×8 kmまで細かくできた.これにより,いくつかの技術的問題が残されているものの,遊牧の解析を行う上で十分な解像度で将来の植生量分布が得られる可能性を示した.最後に,上記手法で作成した2021-2030年のRCP8.5シナリオについてのLAI(葉面積指数)分布を用い,毎月家畜が周囲で最もLAI値が高いグリッドに移動するという仮定を与え,家畜が滞在するグリッドのLAIを計算し,家畜体重が低下する4月を基準に直前の1年間の平均LAIを示した.今後は,ダウンスケール手法および家畜体重モデルの改良をさらに進めたいと考えている.
Author TACHIIRI, Kaoru
Author_FL 立入 郁
Author_FL_xml – sequence: 1
  fullname: 立入 郁
Author_xml – sequence: 1
  fullname: TACHIIRI, Kaoru
  organization: Japan Agency for Marine-Earth Science and Technology
BackLink https://cir.nii.ac.jp/crid/1390296608342235776$$DView record in CiNii
BookMark eNo9kM1PAjEQxRuDiYgcvffgdbHt9PPgwRBQE4wX7k3pFuiG7ZJtMeG_dxHj5c3k5ZfJe3OPRqlLAaFHSmaUGyWfG3fIM4AZtRxu0JhRbSqqJB2hMTFUVdJocYemOTeEEAAiuRBj9Lk8lVMf8HfYheJK7BI-9l0T_O-6OeOF68se53MuocVtV4cDdqnGsWQc26PzBQ9c6lpXx9w-oNvtECNM_-YErZeL9fy9Wn29fcxfV1WjQVaBK77xUButCRHesMCF0uCFCsCNk9zJjWfUSeZU7bjy9RaM0GELXgnGDUzQ0_VsitH6eFEKhjAjJdHAGQOhlBywlyvW5OJ2wR772Lr-bIdG0R-CvXzMAlh6EQ7_vt-73oYEP0snZvY
ContentType Journal Article
Copyright 2023 The Japanese Association for Arid Land Studies
Copyright_xml – notice: 2023 The Japanese Association for Arid Land Studies
DBID RYH
DOI 10.14976/jals.33.1_43
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate 地球システムモデルによる将来の植生活動予測とその遊牧への影響
DocumentTitle_FL 地球システムモデルによる将来の植生活動予測とその遊牧への影響
EISSN 2189-1761
EndPage 49
ExternalDocumentID article_jals_33_1_33_43_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
RYH
ID FETCH-LOGICAL-j836-e474bc3d988005c92e45783c57e349a64a6bc21a62a7da47cdf3958ef3c752493
ISSN 0917-6985
IngestDate Thu Jun 26 21:18:53 EDT 2025
Wed Sep 03 06:30:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j836-e474bc3d988005c92e45783c57e349a64a6bc21a62a7da47cdf3958ef3c752493
OpenAccessLink https://www.jstage.jst.go.jp/article/jals/33/1/33_43/_article/-char/en
PageCount 7
ParticipantIDs nii_cinii_1390296608342235776
jstage_primary_article_jals_33_1_33_43_article_char_en
PublicationCentury 2000
PublicationDate 2023/06/30
2023-06-30
PublicationDateYYYYMMDD 2023-06-30
PublicationDate_xml – month: 06
  year: 2023
  text: 2023/06/30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of Arid Land Studies
PublicationTitleAlternate JALS
PublicationTitle_FL Journal of Arid Land Studies
沙漠研究
JALS
PublicationYear 2023
Publisher The Japanese Association for Arid Land Studies
日本沙漠学会
Publisher_xml – name: The Japanese Association for Arid Land Studies
– name: 日本沙漠学会
References Komiyama H. (2013): Looking back on the 2010 dzud (cold and snow disaster) in Mongolia. Nihon to Mongol (Japan and Mongolia), 126: 33-38.
O’Neill B. C., Tebaldi C., van Vuuren D. P., Eyring V., Friedlingstein P., Hurtt G., Knutti R., Kriegler E., Lamarque J. -F., Lowe J., Meehl G. A., Moss R., Riahi K., Sanderson B. M. (2016): The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9: 3461-3482.
Dong C., Loy C. C., He K., Tang X. (2014): Image Super-Resolution using Deep Convolutional Networks. https://doi.org/10.48550/arXiv.1501.00092
Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado G. S., Davis A., Dean J., Devin M., Ghemawat S., Goodfellow I. J., Harp A., Irving G., Isard M., Jia Y., Józefowicz R., Kaiser L., Kudlur M., Levenberg J., Mané D., Monga R., Moore S., Murray D. G., Olah C., Schuster M., Shlens J., Steiner B., Sutskever I., Talwar K., Tucker P. A., Vanhoucke V., Vasudevan V., Viégas F. B., Vinyals O., Warden P., Wattenberg M., Wicke M., Yu Y., Zheng X. (2015): TensorFlow: Large-scale machine learning on heterogeneous systems, Software available from tensorflow.org.
Komiyama H. (2005): Actual damage to Mongolian animal husbandry due to the 2000-2002 dzud disaster. Bull. Jpn. Assoc. Mongolian Studies, 35: 73-85.
Sakamoto T. (2016): Computational research on mobile pastoralism using agent-based modeling and satellite imagery. PLoS ONE, 11: e0151157.
Ito A., Oikawa T. (2002): A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol. Model., 151: 147-179.
Begzsuren S., Ellis J. E., Ojima D. S., Coughenour M. B., Chuluun T. (2004): Livestock responses to drought and severe winter weather in the Gobi Three Beauty National Park, Mongolia. J. Arid Environ., 59: 785-796.
Moritz M., Hamilton I. M., Yoak A. J., Scholte, P., Cronley J., Maddock, P., Pi H. Y. (2015): Simple movement rules result in ideal free distribution of mobile pastoralists. Ecol. Modell., 305: 54-63.
Tachiiri K., Komiyama H., Morinaga Y., Shinoda M. (2017): Application of a livestock weight model to the 2009-2010 winter disaster in Mongolia. Rangel. J., 39: 263-277.
Hajima T., Watanabe M., Yamamoto A., Tatebe H., Noguchi M. A., Abe M., Ohgaito R., Ito A., Yamazaki D., Okajima H., Ito A., Takata K., Ogochi K., Watanabe S., Kawamiya M. (2020): Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev., 13: 2197-2244.
Tachiiri K., Shinoda M. (2012): Quantitative risk assessment for future meteorological disasters: reduced livestock mortality in Mongolia. Clim. Change, 113: 867-882.
Tachiiri K., Shinoda M., Klinkenberg B., Morinaga Y. (2008): Assessing Mongolian snow disaster risk using livestock and satellite data. J. Arid Environ., 72: 2251-2263.
Sternberg T. (2010): Unravelling Mongolia’s extreme winter disaster of 2010. Nomadic Peoples, 14: 72-86.
Tebaldi C., Debeire K., Eyring V., Fischer E., Fyfe J., Friedlingstein P., Knutti R., Lowe J., O’Neill B., Sanderson B., van Vuuren D., Riahi K., Meinshausen M., Nicholls Z., Tokarska K. B., Hurtt G., Kriegler E., Lamarque J. -F., Meehl G., Moss R., Bauer S. E., Boucher O., Brovkin V., Byun Y. -H., Dix M., Gualdi S., Guo H., John J. G., Kharin S., Kim Y., Koshiro T., Ma L., Olivié D., Panickal S., Qiao F., Rong X., Rosenbloom N., Schupfner M., Séférian R., Sellar A., Semmler T., Shi X., Song Z., Steger C., Stouffer R., Swart N., Tachiiri K., Tang Q., Tatebe H., Voldoire A., Volodin E., Wyser K., Xin X., Yang S., Yu Y., Ziehn T. (2021): Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn., 12: 253-293.
References_xml – reference: Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado G. S., Davis A., Dean J., Devin M., Ghemawat S., Goodfellow I. J., Harp A., Irving G., Isard M., Jia Y., Józefowicz R., Kaiser L., Kudlur M., Levenberg J., Mané D., Monga R., Moore S., Murray D. G., Olah C., Schuster M., Shlens J., Steiner B., Sutskever I., Talwar K., Tucker P. A., Vanhoucke V., Vasudevan V., Viégas F. B., Vinyals O., Warden P., Wattenberg M., Wicke M., Yu Y., Zheng X. (2015): TensorFlow: Large-scale machine learning on heterogeneous systems, Software available from tensorflow.org.
– reference: Sakamoto T. (2016): Computational research on mobile pastoralism using agent-based modeling and satellite imagery. PLoS ONE, 11: e0151157.
– reference: Tebaldi C., Debeire K., Eyring V., Fischer E., Fyfe J., Friedlingstein P., Knutti R., Lowe J., O’Neill B., Sanderson B., van Vuuren D., Riahi K., Meinshausen M., Nicholls Z., Tokarska K. B., Hurtt G., Kriegler E., Lamarque J. -F., Meehl G., Moss R., Bauer S. E., Boucher O., Brovkin V., Byun Y. -H., Dix M., Gualdi S., Guo H., John J. G., Kharin S., Kim Y., Koshiro T., Ma L., Olivié D., Panickal S., Qiao F., Rong X., Rosenbloom N., Schupfner M., Séférian R., Sellar A., Semmler T., Shi X., Song Z., Steger C., Stouffer R., Swart N., Tachiiri K., Tang Q., Tatebe H., Voldoire A., Volodin E., Wyser K., Xin X., Yang S., Yu Y., Ziehn T. (2021): Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn., 12: 253-293.
– reference: Hajima T., Watanabe M., Yamamoto A., Tatebe H., Noguchi M. A., Abe M., Ohgaito R., Ito A., Yamazaki D., Okajima H., Ito A., Takata K., Ogochi K., Watanabe S., Kawamiya M. (2020): Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev., 13: 2197-2244.
– reference: Tachiiri K., Komiyama H., Morinaga Y., Shinoda M. (2017): Application of a livestock weight model to the 2009-2010 winter disaster in Mongolia. Rangel. J., 39: 263-277.
– reference: Begzsuren S., Ellis J. E., Ojima D. S., Coughenour M. B., Chuluun T. (2004): Livestock responses to drought and severe winter weather in the Gobi Three Beauty National Park, Mongolia. J. Arid Environ., 59: 785-796.
– reference: Dong C., Loy C. C., He K., Tang X. (2014): Image Super-Resolution using Deep Convolutional Networks. https://doi.org/10.48550/arXiv.1501.00092
– reference: Ito A., Oikawa T. (2002): A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol. Model., 151: 147-179.
– reference: O’Neill B. C., Tebaldi C., van Vuuren D. P., Eyring V., Friedlingstein P., Hurtt G., Knutti R., Kriegler E., Lamarque J. -F., Lowe J., Meehl G. A., Moss R., Riahi K., Sanderson B. M. (2016): The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9: 3461-3482.
– reference: Sternberg T. (2010): Unravelling Mongolia’s extreme winter disaster of 2010. Nomadic Peoples, 14: 72-86.
– reference: Tachiiri K., Shinoda M. (2012): Quantitative risk assessment for future meteorological disasters: reduced livestock mortality in Mongolia. Clim. Change, 113: 867-882.
– reference: Komiyama H. (2005): Actual damage to Mongolian animal husbandry due to the 2000-2002 dzud disaster. Bull. Jpn. Assoc. Mongolian Studies, 35: 73-85.
– reference: Komiyama H. (2013): Looking back on the 2010 dzud (cold and snow disaster) in Mongolia. Nihon to Mongol (Japan and Mongolia), 126: 33-38.
– reference: Tachiiri K., Shinoda M., Klinkenberg B., Morinaga Y. (2008): Assessing Mongolian snow disaster risk using livestock and satellite data. J. Arid Environ., 72: 2251-2263.
– reference: Moritz M., Hamilton I. M., Yoak A. J., Scholte, P., Cronley J., Maddock, P., Pi H. Y. (2015): Simple movement rules result in ideal free distribution of mobile pastoralists. Ecol. Modell., 305: 54-63.
SSID ssj0003306455
ssib028319946
ssib006770771
Score 2.3235974
Snippet This paper reports the progress of our efforts to apply the livestock weight model developed by ourselves in the past to future scenarios. First, I analyzed...
SourceID nii
jstage
SourceType Publisher
StartPage 43
SubjectTerms Earth system model
future projection
livestock weight model
Mongolia
nomadism
モンゴル
地球システムモデル
家畜体重モデル
将来予測
遊牧
Title Future vegetation projection by Earth system model and its impact on nomadism
URI https://www.jstage.jst.go.jp/article/jals/33/1/33_43/_article/-char/en
https://cir.nii.ac.jp/crid/1390296608342235776
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Arid Land Studies, 2023/06/30, Vol.33(1), pp.43-49
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXY5cIFLQLEAot8IKcqJfU4dnzsVl21LIsEKtLeIsdxpFZsikp3Jfj1jD-aBIHEx8Wy3KqJ_Nzxm7HnDSGvK82FqQxPTZZZdFBEk1Z1Y9Ma14t2xyfMlwO6ei8Wn_jb6_y6L4Los0v21dh8_21eyf-gimOIq8uS_Qdkux_FAewjvtgiwtj-FcYXXhBkdIeef7w0GAMrrou8cq7doUwQaw41b7qzgkN2ZDtqtze6PggJRpqazEVyzhKlfGeWTLNkLl2ruO-o5LyL6K2ms8Vy-XE5utTb3e0wisDgcOUt4u7z0HB3dlUvhwvD33Wc7tb16J2_STq42xijiLjJCRWq7oytH0PSoJzu5GRoZIPaxU-LKVjMINIU996gXvqLVefImXw5gc9fxwDjScnhiNxnUvqD-csPAwsiZSZ7govcyWkfiy7qBs7h8qVwuzePwqvuGW-GT0BKskGC7pQXjtr1esA6VifkYXQX6DRg_4jc2-jH5CrgTnvcaY87rb5RjzsNuFOPO8V5pYg7DbhT_N4B9ydkdTFfzRZpLIuRbgoQqeWSVwZqhZY3y41ilqPVBZNLC1xpwbWoDJtowbSsNZembkDlhW3AyBydbXhKjttta58RyhrnLuR1pkDwphAFA2U9x6yK3Gb2lIgwBeWXIH1SxqVeuokqAcqJazh04y5VEP-Zp-QMp6w0a9eij5ExJwJbAGdOXUmK53_4_AV50C_Sl-R4v7u1Z0j-9tUrj_cPuhZQtw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+vegetation+projection+by+Earth+system+model+and+its+impact+on+nomadism&rft.jtitle=%E6%B2%99%E6%BC%A0%E7%A0%94%E7%A9%B6&rft.au=TACHIIRI+Kaoru&rft.date=2023-06-30&rft.pub=The+Japanese+Association+for+Arid+Land+Studies&rft.issn=0917-6985&rft.eissn=2189-1761&rft.volume=33&rft.issue=1&rft.spage=43&rft.epage=49&rft_id=info:doi/10.14976%2Fjals.33.1_43
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0917-6985&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0917-6985&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0917-6985&client=summon