Evaluation of Automatic Coding for Collaborative Learning Process Based on Multi-Dimensional Coding Scheme

In computer-supported collaborative learning research, it may be a significantly important task to figure out guidelines for carrying out an appropriate scaffolding by extracting indicators for distinguishing groups with poor progress in collaborative process upon analyzing the mechanism of interact...

Full description

Saved in:
Bibliographic Details
Published inJournal of Learning Analytics Vol. 2; pp. 11 - 22
Main Authors Ando, Kimihiko, Shibata, Chihiro, Zhan, Jin, Inaba, Taketoshi
Format Journal Article
LanguageJapanese
Published Japanese Society for Learning Analytics 2018
特定非営利活動法人 学習分析学会
Subjects
Online AccessGet full text
ISSN2436-6862
DOI10.51034/jasla.2.0_11

Cover

Abstract In computer-supported collaborative learning research, it may be a significantly important task to figure out guidelines for carrying out an appropriate scaffolding by extracting indicators for distinguishing groups with poor progress in collaborative process upon analyzing the mechanism of interactive activation. And for this collaborative process analysis, coding and statistical analysis are often adopted as a method. But as far as our project is concerned, we are trying to automate this huge laborious coding work with deep learning technology. In our previous research, supervised data was prepared for deep learning based on a coding scheme consisting of 16 labels according to speech acts. In this paper, with a multi- dimensional coding scheme with five dimensions newly designed aiming at analyzing collaborative learning process more comprehensively and multilaterally, an automatic coding is performed by deep learning methods and its accuracy is verified. In addition, we apply our methods to predict another dataset for verification and investigate the correlation between the multidimensional coding labels and the assessments given by professionals manually.
AbstractList In computer-supported collaborative learning research, it may be a significantly important task to figure out guidelines for carrying out an appropriate scaffolding by extracting indicators for distinguishing groups with poor progress in collaborative process upon analyzing the mechanism of interactive activation. And for this collaborative process analysis, coding and statistical analysis are often adopted as a method. But as far as our project is concerned, we are trying to automate this huge laborious coding work with deep learning technology. In our previous research, supervised data was prepared for deep learning based on a coding scheme consisting of 16 labels according to speech acts. In this paper, with a multi- dimensional coding scheme with five dimensions newly designed aiming at analyzing collaborative learning process more comprehensively and multilaterally, an automatic coding is performed by deep learning methods and its accuracy is verified. In addition, we apply our methods to predict another dataset for verification and investigate the correlation between the multidimensional coding labels and the assessments given by professionals manually.
In computer-supported collaborative learning research, it may be a significantly important task to figure out guidelines for carrying out an appropriate scaffolding by extracting indicators for distinguishing groups with poor progress in collaborative process upon analyzing the mechanism of interactive activation. And for this collaborative process analysis, coding and statistical analysis are often adopted as a method. But as far as our project is concerned, we are trying to automate this huge laborious coding work with deep learning technology. In our previous research, supervised data was prepared for deep learning based on a coding scheme consisting of 16 labels according to speech acts. In this paper, with a multi- dimensional coding scheme with five dimensions newly designed aiming at analyzing collaborative learning process more comprehensively and multilaterally, an automatic coding is performed by deep learning methods and its accuracy is verified. In addition, we apply our methods to predict another dataset for verification and investigate the correlation between the multidimensional coding labels and the assessments given by professionals manually. コンピュータ支援協調学習研究において、相互作用の活性化のメカニズムを分析し、協調プロセスがうまく進行していな いグループを識別する指標を抽出し、適切な足場掛けを行う指針を得ることは、きわめて重要な課題といえる。協調プロセス分析のため、会話データへのコーディングと統計的分析が研究方法としてしばしば採用されるが、本研究プロジェクトでは、深層学習技術による高精度のコーディングの自動化の手法を開発し、その精度と有効性を評価してきた。我々の行った先行研究ではスピーチアクトに基づく 16 のラベルで構成されるコーディングスキームに依拠して、教師付データを作成し、深層学習の対象とした。本論では、より包括的に協調プロセスを掌握することをめざして、5つの次元をもつ多層的なコーディングスキームを新たに構築し、これに基づいて深層学習技術による自動コーディングを行い、その精度を検証することにした。さらに精度検証で使用したデータとは異なるデータセットに対して自動コーディングを行い、その結果の分析を行った。
Author Shibata, Chihiro
Ando, Kimihiko
Inaba, Taketoshi
Zhan, Jin
Author_FL 靳 展
安藤 公彦
柴田 千尋
稲葉 竹俊
Author_FL_xml – sequence: 1
  fullname: 靳 展
– sequence: 2
  fullname: 安藤 公彦
– sequence: 3
  fullname: 柴田 千尋
– sequence: 4
  fullname: 稲葉 竹俊
Author_xml – sequence: 1
  fullname: Ando, Kimihiko
  organization: Tokyo University of Technology
– sequence: 1
  fullname: Shibata, Chihiro
  organization: Tokyo University of Technology
– sequence: 1
  fullname: Zhan, Jin
  organization: Tokyo University of Technology
– sequence: 1
  fullname: Inaba, Taketoshi
  organization: Tokyo University of Technology
BackLink https://cir.nii.ac.jp/crid/1390852870557648384$$DView record in CiNii
BookMark eNo1UEtLAzEQDqJgrT1634PXrXnuZg8eaq0PqCjYe5hms22WNJFkK_jvTa1lmPc3H3xzhc598AahG4KngmDG73pIDqZ0ihUhZ2hEOavKSlb0Ek1S6jHGjFGKOR-hfvENbg-DDb4IXTHbD2GXO13MQ2v9puhCzKVzsA4xz79NsTQQ_WH1EYM2KRUPkExb5Pu3vRts-Wh3xqfMB-5E8qm3Zmeu0UUHLpnJfx6j1dNiNX8pl-_Pr_PZsuwl46UQwFvGK9GAZDXwBgMhmNaNFqzrSLsWnIMUDWGVrjHRupKadzRLpNx0BNgY3R5pvbVK20MkrMFSUFljIeqKSyZ5ht0fYX0aYGPUV7Q7iD8KYlbvjPp7oaIKZz_Yaa63EJXx7Be7Z270
ContentType Journal Article
Copyright 2018 Japanese Society for Learning Analytics
Copyright_xml – notice: 2018 Japanese Society for Learning Analytics
DBID RYH
DOI 10.51034/jasla.2.0_11
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate 多次元コーディングスキームに依拠した協調学習プロセスの 自動コーディングの精度検証
DocumentTitle_FL 多次元コーディングスキームに依拠した協調学習プロセスの 自動コーディングの精度検証
EISSN 2436-6862
EndPage 22
ExternalDocumentID 130008108152
article_jasla_2_0_2_2_2_article_char_en
GroupedDBID JSF
RJT
RYH
ID FETCH-LOGICAL-j834-55a4d34659a837a490a110279c53ff1db544a859136c701cc68c4f224324ef1a3
IngestDate Thu Jun 26 21:53:00 EDT 2025
Wed Sep 03 06:30:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j834-55a4d34659a837a490a110279c53ff1db544a859136c701cc68c4f224324ef1a3
OpenAccessLink https://www.jstage.jst.go.jp/article/jasla/2/0/2_2-2/_article/-char/en
PageCount 12
ParticipantIDs nii_cinii_1390852870557648384
jstage_primary_article_jasla_2_0_2_2_2_article_char_en
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle Journal of Learning Analytics
PublicationTitleAlternate 学習分析学
PublicationTitle_FL 学習分析学
PublicationYear 2018
Publisher Japanese Society for Learning Analytics
特定非営利活動法人 学習分析学会
Publisher_xml – name: Japanese Society for Learning Analytics
– name: 特定非営利活動法人 学習分析学会
SSID ssj0003322044
ssib050731812
ssib046292118
Score 1.7158984
Snippet In computer-supported collaborative learning research, it may be a significantly important task to figure out guidelines for carrying out an appropriate...
SourceID nii
jstage
SourceType Publisher
StartPage 11
SubjectTerms Coding Scheme
Collaborative Process
Computer Supported Collaborative Learning
Deep Learning
コンピュータ支援協調学習
コーディングスキーム
協調プロセス
深層学習
Title Evaluation of Automatic Coding for Collaborative Learning Process Based on Multi-Dimensional Coding Scheme
URI https://www.jstage.jst.go.jp/article/jasla/2/0/2_2-2/_article/-char/en
https://cir.nii.ac.jp/crid/1390852870557648384
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Learning Analytics, 2018, Vol.2, pp.11-22
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCQIBYYJEP3KqUxI88jkspWhYtF4q0t8ixE-quSNCScuDAb2fGTtyUh3iorVW5ilN5xjPf2DNfCHmWaJWD1TeRlomOBKuKKGe6iGqO4L9K60Th1sDF2_TsvTi_lJez2W5aXdJXC_31l3Ul_yNV6AO5YpXsP0g2DAod8B3kCy1IGNq_kvEqUHU7QLnrO0_AuuzMmCC53Mv5Sz2yqX4Y6wPmL8CJGTwwcIW40Uvk-vc8HeMg70Cqh4QGEwwbxnPcJv0kcx43oufnNqjeaWu6-Rv70W7sVRe2dTa2Ur3CfJCNvQ7dr1tVqflaXdV993ljpxsTgxV17gLcPD4-8yDx9Dd_qHamjgmeRlirMrXLbGJXB4PsPbQvZP7R9iM1oHAPHYC1tGALDG72Ti6kHuLxHcAgeEvw3DdZliWYCXrxbTWaIZGyAsLiYJYAMfPAaoYOnoMRjIXwjK3uts-nNwUsswVkj5QNN1prJ3BlfYfcHmRET73S3CWzrbpHtnuFoV1Dg8JQL2sKM0gPFIaO80kHhaFOYShc_5PCjIN4hblP1q9W6-VZNDxsI9rmXERSKmG4SGWhcp4pUcQKgCHLCi150ySmkkIo5Drkqc7iROs016IB_AeAvG5gQT8gR23X1g8JNZw3Oi_iikkjZAYhia6TxCSFECZrRHZMUj8_5SdPqFIOC6h0s1iyMoYPvsZ-LECE9X5MTmA-S22xhcgFogU8ppcQMouc5-LRH35_TG6hnvoNtCfkqL_e1ScAKfvqqVOA74Oyeig
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Automatic+Coding+for+Collaborative+Learning+Process+Based+on+Multi-Dimensional+Coding+Scheme&rft.jtitle=Journal+of+Learning+Analytics&rft.au=Zhan+Jin&rft.au=Ando+Kimihiko&rft.au=Shibata+Chihiro&rft.au=Inaba+Taketoshi&rft.date=2018&rft.pub=Japanese+Society+for+Learning+Analytics&rft.eissn=2436-6862&rft.volume=2&rft.spage=11&rft.epage=22&rft_id=info:doi/10.51034%2Fjasla.2.0_11&rft.externalDocID=130008108152