Evaluation of Automatic Coding for Collaborative Learning Process Based on Multi-Dimensional Coding Scheme
In computer-supported collaborative learning research, it may be a significantly important task to figure out guidelines for carrying out an appropriate scaffolding by extracting indicators for distinguishing groups with poor progress in collaborative process upon analyzing the mechanism of interact...
Saved in:
Published in | Journal of Learning Analytics Vol. 2; pp. 11 - 22 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Japanese |
Published |
Japanese Society for Learning Analytics
2018
特定非営利活動法人 学習分析学会 |
Subjects | |
Online Access | Get full text |
ISSN | 2436-6862 |
DOI | 10.51034/jasla.2.0_11 |
Cover
Abstract | In computer-supported collaborative learning research, it may be a significantly important task to figure out guidelines for carrying out an appropriate scaffolding by extracting indicators for distinguishing groups with poor progress in collaborative process upon analyzing the mechanism of interactive activation. And for this collaborative process analysis, coding and statistical analysis are often adopted as a method. But as far as our project is concerned, we are trying to automate this huge laborious coding work with deep learning technology. In our previous research, supervised data was prepared for deep learning based on a coding scheme consisting of 16 labels according to speech acts. In this paper, with a multi- dimensional coding scheme with five dimensions newly designed aiming at analyzing collaborative learning process more comprehensively and multilaterally, an automatic coding is performed by deep learning methods and its accuracy is verified. In addition, we apply our methods to predict another dataset for verification and investigate the correlation between the multidimensional coding labels and the assessments given by professionals manually. |
---|---|
AbstractList | In computer-supported collaborative learning research, it may be a significantly important task to figure out guidelines for carrying out an appropriate scaffolding by extracting indicators for distinguishing groups with poor progress in collaborative process upon analyzing the mechanism of interactive activation. And for this collaborative process analysis, coding and statistical analysis are often adopted as a method. But as far as our project is concerned, we are trying to automate this huge laborious coding work with deep learning technology. In our previous research, supervised data was prepared for deep learning based on a coding scheme consisting of 16 labels according to speech acts. In this paper, with a multi- dimensional coding scheme with five dimensions newly designed aiming at analyzing collaborative learning process more comprehensively and multilaterally, an automatic coding is performed by deep learning methods and its accuracy is verified. In addition, we apply our methods to predict another dataset for verification and investigate the correlation between the multidimensional coding labels and the assessments given by professionals manually. In computer-supported collaborative learning research, it may be a significantly important task to figure out guidelines for carrying out an appropriate scaffolding by extracting indicators for distinguishing groups with poor progress in collaborative process upon analyzing the mechanism of interactive activation. And for this collaborative process analysis, coding and statistical analysis are often adopted as a method. But as far as our project is concerned, we are trying to automate this huge laborious coding work with deep learning technology. In our previous research, supervised data was prepared for deep learning based on a coding scheme consisting of 16 labels according to speech acts. In this paper, with a multi- dimensional coding scheme with five dimensions newly designed aiming at analyzing collaborative learning process more comprehensively and multilaterally, an automatic coding is performed by deep learning methods and its accuracy is verified. In addition, we apply our methods to predict another dataset for verification and investigate the correlation between the multidimensional coding labels and the assessments given by professionals manually. コンピュータ支援協調学習研究において、相互作用の活性化のメカニズムを分析し、協調プロセスがうまく進行していな いグループを識別する指標を抽出し、適切な足場掛けを行う指針を得ることは、きわめて重要な課題といえる。協調プロセス分析のため、会話データへのコーディングと統計的分析が研究方法としてしばしば採用されるが、本研究プロジェクトでは、深層学習技術による高精度のコーディングの自動化の手法を開発し、その精度と有効性を評価してきた。我々の行った先行研究ではスピーチアクトに基づく 16 のラベルで構成されるコーディングスキームに依拠して、教師付データを作成し、深層学習の対象とした。本論では、より包括的に協調プロセスを掌握することをめざして、5つの次元をもつ多層的なコーディングスキームを新たに構築し、これに基づいて深層学習技術による自動コーディングを行い、その精度を検証することにした。さらに精度検証で使用したデータとは異なるデータセットに対して自動コーディングを行い、その結果の分析を行った。 |
Author | Shibata, Chihiro Ando, Kimihiko Inaba, Taketoshi Zhan, Jin |
Author_FL | 靳 展 安藤 公彦 柴田 千尋 稲葉 竹俊 |
Author_FL_xml | – sequence: 1 fullname: 靳 展 – sequence: 2 fullname: 安藤 公彦 – sequence: 3 fullname: 柴田 千尋 – sequence: 4 fullname: 稲葉 竹俊 |
Author_xml | – sequence: 1 fullname: Ando, Kimihiko organization: Tokyo University of Technology – sequence: 1 fullname: Shibata, Chihiro organization: Tokyo University of Technology – sequence: 1 fullname: Zhan, Jin organization: Tokyo University of Technology – sequence: 1 fullname: Inaba, Taketoshi organization: Tokyo University of Technology |
BackLink | https://cir.nii.ac.jp/crid/1390852870557648384$$DView record in CiNii |
BookMark | eNo1UEtLAzEQDqJgrT1634PXrXnuZg8eaq0PqCjYe5hms22WNJFkK_jvTa1lmPc3H3xzhc598AahG4KngmDG73pIDqZ0ihUhZ2hEOavKSlb0Ek1S6jHGjFGKOR-hfvENbg-DDb4IXTHbD2GXO13MQ2v9puhCzKVzsA4xz79NsTQQ_WH1EYM2KRUPkExb5Pu3vRts-Wh3xqfMB-5E8qm3Zmeu0UUHLpnJfx6j1dNiNX8pl-_Pr_PZsuwl46UQwFvGK9GAZDXwBgMhmNaNFqzrSLsWnIMUDWGVrjHRupKadzRLpNx0BNgY3R5pvbVK20MkrMFSUFljIeqKSyZ5ht0fYX0aYGPUV7Q7iD8KYlbvjPp7oaIKZz_Yaa63EJXx7Be7Z270 |
ContentType | Journal Article |
Copyright | 2018 Japanese Society for Learning Analytics |
Copyright_xml | – notice: 2018 Japanese Society for Learning Analytics |
DBID | RYH |
DOI | 10.51034/jasla.2.0_11 |
DatabaseName | CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | 多次元コーディングスキームに依拠した協調学習プロセスの 自動コーディングの精度検証 |
DocumentTitle_FL | 多次元コーディングスキームに依拠した協調学習プロセスの 自動コーディングの精度検証 |
EISSN | 2436-6862 |
EndPage | 22 |
ExternalDocumentID | 130008108152 article_jasla_2_0_2_2_2_article_char_en |
GroupedDBID | JSF RJT RYH |
ID | FETCH-LOGICAL-j834-55a4d34659a837a490a110279c53ff1db544a859136c701cc68c4f224324ef1a3 |
IngestDate | Thu Jun 26 21:53:00 EDT 2025 Wed Sep 03 06:30:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j834-55a4d34659a837a490a110279c53ff1db544a859136c701cc68c4f224324ef1a3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jasla/2/0/2_2-2/_article/-char/en |
PageCount | 12 |
ParticipantIDs | nii_cinii_1390852870557648384 jstage_primary_article_jasla_2_0_2_2_2_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationTitle | Journal of Learning Analytics |
PublicationTitleAlternate | 学習分析学 |
PublicationTitle_FL | 学習分析学 |
PublicationYear | 2018 |
Publisher | Japanese Society for Learning Analytics 特定非営利活動法人 学習分析学会 |
Publisher_xml | – name: Japanese Society for Learning Analytics – name: 特定非営利活動法人 学習分析学会 |
SSID | ssj0003322044 ssib050731812 ssib046292118 |
Score | 1.7158984 |
Snippet | In computer-supported collaborative learning research, it may be a significantly important task to figure out guidelines for carrying out an appropriate... |
SourceID | nii jstage |
SourceType | Publisher |
StartPage | 11 |
SubjectTerms | Coding Scheme Collaborative Process Computer Supported Collaborative Learning Deep Learning コンピュータ支援協調学習 コーディングスキーム 協調プロセス 深層学習 |
Title | Evaluation of Automatic Coding for Collaborative Learning Process Based on Multi-Dimensional Coding Scheme |
URI | https://www.jstage.jst.go.jp/article/jasla/2/0/2_2-2/_article/-char/en https://cir.nii.ac.jp/crid/1390852870557648384 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Learning Analytics, 2018, Vol.2, pp.11-22 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCQIBYYJEP3KqUxI88jkspWhYtF4q0t8ixE-quSNCScuDAb2fGTtyUh3iorVW5ilN5xjPf2DNfCHmWaJWD1TeRlomOBKuKKGe6iGqO4L9K60Th1sDF2_TsvTi_lJez2W5aXdJXC_31l3Ul_yNV6AO5YpXsP0g2DAod8B3kCy1IGNq_kvEqUHU7QLnrO0_AuuzMmCC53Mv5Sz2yqX4Y6wPmL8CJGTwwcIW40Uvk-vc8HeMg70Cqh4QGEwwbxnPcJv0kcx43oufnNqjeaWu6-Rv70W7sVRe2dTa2Ur3CfJCNvQ7dr1tVqflaXdV993ljpxsTgxV17gLcPD4-8yDx9Dd_qHamjgmeRlirMrXLbGJXB4PsPbQvZP7R9iM1oHAPHYC1tGALDG72Ti6kHuLxHcAgeEvw3DdZliWYCXrxbTWaIZGyAsLiYJYAMfPAaoYOnoMRjIXwjK3uts-nNwUsswVkj5QNN1prJ3BlfYfcHmRET73S3CWzrbpHtnuFoV1Dg8JQL2sKM0gPFIaO80kHhaFOYShc_5PCjIN4hblP1q9W6-VZNDxsI9rmXERSKmG4SGWhcp4pUcQKgCHLCi150ySmkkIo5Drkqc7iROs016IB_AeAvG5gQT8gR23X1g8JNZw3Oi_iikkjZAYhia6TxCSFECZrRHZMUj8_5SdPqFIOC6h0s1iyMoYPvsZ-LECE9X5MTmA-S22xhcgFogU8ppcQMouc5-LRH35_TG6hnvoNtCfkqL_e1ScAKfvqqVOA74Oyeig |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Automatic+Coding+for+Collaborative+Learning+Process+Based+on+Multi-Dimensional+Coding+Scheme&rft.jtitle=Journal+of+Learning+Analytics&rft.au=Zhan+Jin&rft.au=Ando+Kimihiko&rft.au=Shibata+Chihiro&rft.au=Inaba+Taketoshi&rft.date=2018&rft.pub=Japanese+Society+for+Learning+Analytics&rft.eissn=2436-6862&rft.volume=2&rft.spage=11&rft.epage=22&rft_id=info:doi/10.51034%2Fjasla.2.0_11&rft.externalDocID=130008108152 |