Dehydrogenative Conversion of Methane to C2 Hydrocarbons and Aromatics over Pt/Al2O3 Catalysts
Natural gas is attracting attention as an alternative fossil resource to oil. As the primary component of natural gas is methane, there is a growing demand for the development of catalytic processes capable of direct CH4 conversion into valuable chemicals. In this study, the dehydrogenative conversi...
Saved in:
Published in | Journal of the Japan Petroleum Institute Vol. 66; no. 5; pp. 162 - 170 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Tokyo
The Japan Petroleum Institute
01.09.2023
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1346-8804 1349-273X |
DOI | 10.1627/jpi.66.162 |
Cover
Abstract | Natural gas is attracting attention as an alternative fossil resource to oil. As the primary component of natural gas is methane, there is a growing demand for the development of catalytic processes capable of direct CH4 conversion into valuable chemicals. In this study, the dehydrogenative conversion of CH4 over Pt/Al2O3 catalysts was investigated. C2 hydrocarbons and aromatics were formed from CH4 at moderate reaction temperatures (550-600 °C). At low concentrations of CH4, no hydrocarbons were produced, and coke deposition predominated. From the results, we considered that adsorbed methyl and methylene species were coupled on the Pt surface, forming hydrocarbons. Although the Pt/Al2O3 catalyst was deactivated by coke deposition, it was found that the removal of coke by oxygen treatment regenerated the catalytic activity of the Pt/Al2O3. |
---|---|
AbstractList | Natural gas is attracting attention as an alternative fossil resource to oil. As the primary component of natural gas is methane, there is a growing demand for the development of catalytic processes capable of direct CH4 conversion into valuable chemicals. In this study, the dehydrogenative conversion of CH4 over Pt/Al2O3 catalysts was investigated. C2 hydrocarbons and aromatics were formed from CH4 at moderate reaction temperatures (550-600 °C). At low concentrations of CH4, no hydrocarbons were produced, and coke deposition predominated. From the results, we considered that adsorbed methyl and methylene species were coupled on the Pt surface, forming hydrocarbons. Although the Pt/Al2O3 catalyst was deactivated by coke deposition, it was found that the removal of coke by oxygen treatment regenerated the catalytic activity of the Pt/Al2O3. |
Author | KUROKAWA, Hideki TOMONO, Tatsuki TAKAMURA, Riku YOSHIDA-HIRAHARA, Miru OGIHARA, Hitoshi |
Author_xml | – sequence: 1 fullname: OGIHARA, Hitoshi organization: Graduate School of Science and Engineering, Saitama University – sequence: 1 fullname: YOSHIDA-HIRAHARA, Miru organization: Graduate School of Science and Engineering, Saitama University – sequence: 1 fullname: KUROKAWA, Hideki organization: Graduate School of Science and Engineering, Saitama University – sequence: 1 fullname: TAKAMURA, Riku organization: Graduate School of Science and Engineering, Saitama University – sequence: 1 fullname: TOMONO, Tatsuki organization: Graduate School of Science and Engineering, Saitama University |
BookMark | eNo9kMtuwjAQRa2KSqWUTb_AUteBxMaPLLpA6YNKVHTBoqtaTjKBRMGmtkHi72tK1c3M1ejcGc29RQNjDSB0n6WTjBMx7fbthPOzvkLDjM7yhAj6OfjVPJEynd2gsfdtmRJGGU0pHaKvJ9ieamc3YHRoj4ALa47gfGsNtg1-h7DVBnCwuCB4cSYr7UprPNamxnNnd9FWeWyjCX-E6bwnK4oLHXR_8sHfoetG9x7Gf32E1i_P62KRLFevb8V8mXSSiKQuOal5LjMCoqzSDBoJLM-bmjV1RZkQTVblIGRdMygboWe8ZHlDgWdaclFKOkIPl7V7Z78P4IPq7MGZeFERKXMpWeQi9XihOh_0BtTetTvtTkq7-EIPKuanOFfsXGKI__Nqq50CQ38ATUxuZQ |
ContentType | Journal Article |
Copyright | 2023 by The Japan Petroleum Institute Copyright Japan Science and Technology Agency 2023 |
Copyright_xml | – notice: 2023 by The Japan Petroleum Institute – notice: Copyright Japan Science and Technology Agency 2023 |
DBID | F1W H96 L.G |
DOI | 10.1627/jpi.66.162 |
DatabaseName | ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1349-273X |
EndPage | 170 |
ExternalDocumentID | article_jpi_66_5_66_162_article_char_en |
GroupedDBID | 29L 2WC 5GY ACGFO ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 E3Z EBS EJD HH5 JSF JSH KQ8 OK1 OVT RJT RNS RZJ XSB F1W H96 L.G |
ID | FETCH-LOGICAL-j827-db62d69812e7bc01ef8e599fd5fdc3577f1c9e78dd5ebf7a46b59f3e61a867b83 |
ISSN | 1346-8804 |
IngestDate | Mon Jun 30 08:40:30 EDT 2025 Wed Sep 03 06:30:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j827-db62d69812e7bc01ef8e599fd5fdc3577f1c9e78dd5ebf7a46b59f3e61a867b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jpi/66/5/66_162/_article/-char/en |
PQID | 2889885867 |
PQPubID | 1976364 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2889885867 jstage_primary_article_jpi_66_5_66_162_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2023/09/01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023/09/01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of the Japan Petroleum Institute |
PublicationTitleAlternate | J. Jpn. Petrol. Inst. |
PublicationYear | 2023 |
Publisher | The Japan Petroleum Institute Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Petroleum Institute – name: Japan Science and Technology Agency |
References | 5) Galadima, A., Muraza, O., Catal. Surv. Asia, 23, (3), 149 (2019). 6) Sun, K. D., Ginosar, D. M., He, T., Zhang, Y. L., Fan, M. H., Chen, R. P., Ind. Eng. Chem. Res., 57, (6), 1768 (2018). 9) Guo, X. G., Fang, G. Z., Li, G., Ma, H., Fan, H. J., Yu, L., Ma, C., Wu, X., Deng, D. H., Wei, M. M., Tan, D., Si, R., Zhang, S., Li, J. Q., Sun, L. T., Tang, Z. C., Pan, X. L., Bao, X. H., Science, 344, (6184), 616 (2014). 21) Ferreira-Aparicio, P., Rodriguez-Ramos, I., Guerrero-Ruiz, A., Appl. Catal. A: General, 148, 343 (1997). 3) Olivos-Suarez, A. I., Szecsenyi, A., Hensen, E. J. M., Ruiz-Martinez, J., Pidko, E. A., Gascon, J., ACS Catal., 6, (5), 2965 (2016). 7) Wang, L. S., Tao, L. X., Xie, M. S., Xu, G. F., Huang, J. S., Xu, Y. D., Catal. Lett., 21, (1-2), 35 (1993). 13) Chen, J. Z., Wu, Z. W., Zhang, X. B., Choi, S., Xiao, Y., Varma, A., Liu, W., Zhang, G. H., Miller, J. T., Catal. Sci. Technol., 9, (6), 1349 (2019). 14) Xiao, Y., Varma, A., ACS Catal., 8, (4), 2735 (2018). 11) Weckhuysen, B. M., Wang, D. J., Rosynek, M. P., Lunsford, J. H., Angew. Chem. Int. Ed., 36, (21), 2374 (1997). 2) Ogihara, H., Tajima, H., Kurokawa, H., React. Chem. Eng., 5, (1), 145 (2020). 12) Gerceker, D., Motagamwala, A. H., Rivera-Dones, K. R., Miller, J. B., Huber, G. W., Mavrikakis, M., Dumesic, J. A., ACS Catal., 7, (3), 2088 (2017). 24) Kosinov, N., Coumans, F. J. A. G., Li, G. N., Uslamin, E., Mezari, B., Wijpkema, A. S. G., Pidko, E. A., Hensen, E. J. M., J. Catal., 346, 125 (2017). 19) Belgued, M., Parejya, P., Amariglio, A., Amariglio, H., Nature, 352, 789 (1991). 15) Bajec, D., Kostyniuk, A., Pohar, A., Likozar, B., Chem. Eng. J., 396, 125182 (2020). 22) Xiao, L., Wang, L., J. Phys. Chem. B, 111, 1657 (2007). 10) Nishikawa, Y., Ogihara, H., Yamanaka, I., ChemistrySelect, 2, (16), 4572 (2017). 20) Memon, P. G., J. Mol. Catal., 59, 207 (1990). 17) Xie, P. F., Pu, T. C., Nie, A. M., Hwang, S., Purdy, S. C., Yu, W. J., Su, D., Miller, J. T., Wang, C., ACS Catal., 8, (5), 4044 (2018). 4) Wolf, E. E., J. Phys. Chem. Lett., 5, (6), 986 (2014). 8) Dipu, A. L., Ohbuchi, S., Nishikawa, Y., Iguchi, S., Ogihara, H., Yamanaka, I., ACS Catal., 10, (1), 375 (2020). 16) Eggart, D., Huang, X., Zimina, A., Yang, J. Z., Pan, Y., Pan, X. L., Grunwaldt, J. D., ACS Catal., 12, (7), 3897 (2022). 23) Viñes, F., Lykhach, Y., Staudt, T., Lorenz, M. P. A., Papp, C., Steinrück, H.-P., Libuda, J., Neyman, K. M., Görling, A., Chem. Eur. J., 16, 6530 (2010). 18) Li, Z., Xiao, Y., Chowdhury, P. R., Wu, Z., Ma, T., Chen, J. Z., Wan, G., Kim, T.-H., Jing, D., He, P., Potdar, P. J., Zhou, L., Zeng, Z., Ruan, X., Miller, J. T., Greeley, J. P., Wu, Y., Varma, V., Nat. Catal., 4, 882 (2021). 1) Ashik, U. P. M., Daud, W. M. A. W., Abbas, H. F., Renew. Sust. Energy Rev., 44, 221 (2015). |
References_xml | – reference: 7) Wang, L. S., Tao, L. X., Xie, M. S., Xu, G. F., Huang, J. S., Xu, Y. D., Catal. Lett., 21, (1-2), 35 (1993). – reference: 9) Guo, X. G., Fang, G. Z., Li, G., Ma, H., Fan, H. J., Yu, L., Ma, C., Wu, X., Deng, D. H., Wei, M. M., Tan, D., Si, R., Zhang, S., Li, J. Q., Sun, L. T., Tang, Z. C., Pan, X. L., Bao, X. H., Science, 344, (6184), 616 (2014). – reference: 15) Bajec, D., Kostyniuk, A., Pohar, A., Likozar, B., Chem. Eng. J., 396, 125182 (2020). – reference: 10) Nishikawa, Y., Ogihara, H., Yamanaka, I., ChemistrySelect, 2, (16), 4572 (2017). – reference: 3) Olivos-Suarez, A. I., Szecsenyi, A., Hensen, E. J. M., Ruiz-Martinez, J., Pidko, E. A., Gascon, J., ACS Catal., 6, (5), 2965 (2016). – reference: 11) Weckhuysen, B. M., Wang, D. J., Rosynek, M. P., Lunsford, J. H., Angew. Chem. Int. Ed., 36, (21), 2374 (1997). – reference: 13) Chen, J. Z., Wu, Z. W., Zhang, X. B., Choi, S., Xiao, Y., Varma, A., Liu, W., Zhang, G. H., Miller, J. T., Catal. Sci. Technol., 9, (6), 1349 (2019). – reference: 20) Memon, P. G., J. Mol. Catal., 59, 207 (1990). – reference: 6) Sun, K. D., Ginosar, D. M., He, T., Zhang, Y. L., Fan, M. H., Chen, R. P., Ind. Eng. Chem. Res., 57, (6), 1768 (2018). – reference: 4) Wolf, E. E., J. Phys. Chem. Lett., 5, (6), 986 (2014). – reference: 5) Galadima, A., Muraza, O., Catal. Surv. Asia, 23, (3), 149 (2019). – reference: 24) Kosinov, N., Coumans, F. J. A. G., Li, G. N., Uslamin, E., Mezari, B., Wijpkema, A. S. G., Pidko, E. A., Hensen, E. J. M., J. Catal., 346, 125 (2017). – reference: 19) Belgued, M., Parejya, P., Amariglio, A., Amariglio, H., Nature, 352, 789 (1991). – reference: 21) Ferreira-Aparicio, P., Rodriguez-Ramos, I., Guerrero-Ruiz, A., Appl. Catal. A: General, 148, 343 (1997). – reference: 12) Gerceker, D., Motagamwala, A. H., Rivera-Dones, K. R., Miller, J. B., Huber, G. W., Mavrikakis, M., Dumesic, J. A., ACS Catal., 7, (3), 2088 (2017). – reference: 18) Li, Z., Xiao, Y., Chowdhury, P. R., Wu, Z., Ma, T., Chen, J. Z., Wan, G., Kim, T.-H., Jing, D., He, P., Potdar, P. J., Zhou, L., Zeng, Z., Ruan, X., Miller, J. T., Greeley, J. P., Wu, Y., Varma, V., Nat. Catal., 4, 882 (2021). – reference: 1) Ashik, U. P. M., Daud, W. M. A. W., Abbas, H. F., Renew. Sust. Energy Rev., 44, 221 (2015). – reference: 16) Eggart, D., Huang, X., Zimina, A., Yang, J. Z., Pan, Y., Pan, X. L., Grunwaldt, J. D., ACS Catal., 12, (7), 3897 (2022). – reference: 2) Ogihara, H., Tajima, H., Kurokawa, H., React. Chem. Eng., 5, (1), 145 (2020). – reference: 8) Dipu, A. L., Ohbuchi, S., Nishikawa, Y., Iguchi, S., Ogihara, H., Yamanaka, I., ACS Catal., 10, (1), 375 (2020). – reference: 22) Xiao, L., Wang, L., J. Phys. Chem. B, 111, 1657 (2007). – reference: 23) Viñes, F., Lykhach, Y., Staudt, T., Lorenz, M. P. A., Papp, C., Steinrück, H.-P., Libuda, J., Neyman, K. M., Görling, A., Chem. Eur. J., 16, 6530 (2010). – reference: 14) Xiao, Y., Varma, A., ACS Catal., 8, (4), 2735 (2018). – reference: 17) Xie, P. F., Pu, T. C., Nie, A. M., Hwang, S., Purdy, S. C., Yu, W. J., Su, D., Miller, J. T., Wang, C., ACS Catal., 8, (5), 4044 (2018). |
SSID | ssib025353033 ssj0032567 |
Score | 2.2819507 |
Snippet | Natural gas is attracting attention as an alternative fossil resource to oil. As the primary component of natural gas is methane, there is a growing demand for... |
SourceID | proquest jstage |
SourceType | Aggregation Database Publisher |
StartPage | 162 |
SubjectTerms | Aluminum oxide Aromatic compounds Aromatization Catalysts Catalytic activity Catalytic converters Coke Dehydrogenation Dehydrogenative conversion Deposition Fossils Hydrocarbons Low concentrations Methane Natural gas Non-oxidative coupling Platinum catalyst Regeneration |
Title | Dehydrogenative Conversion of Methane to C2 Hydrocarbons and Aromatics over Pt/Al2O3 Catalysts |
URI | https://www.jstage.jst.go.jp/article/jpi/66/5/66_162/_article/-char/en https://www.proquest.com/docview/2889885867 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of the Japan Petroleum Institute, 2023/09/01, Vol.66(5), pp.162-170 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuMABjS8xNpAP3Kp0jR07zjHqgHRT6VRa0RNRHDtbO2inNj3A_8f_xbOdpoFNYuxiVa5tveb9-t7L8_tA6B0ruoUvFfGCPMy8QGnfk0IJj2WsqyXoJ6HNje7gE08mwemUTVutX42opU0pO_nPW_NK7sNVmAO-mizZ_-BsfShMwGfgL4zAYRjvxOMTfflDrZbwvSvf3TMh5Nb_ZSNbtHGL29YYPdJOzMo8W0kTG2O85fFqacu1rtsmirN9XprSCt_IkJqsQFOpxNV4usVyNbbqKSjZhYnuNeGJm--7oIPaa_uxn8Sj2Ko2kBrry1ktYIafk_5J7CX9UbxdMpitNrXsn4yGZ_GXaqvSV_XOcXwWDyZux2h2tWm6LAitY7IcyMb_pNLJYhpwD8SL8zfo7VxksommTQHu2rZUQGUNaexXgt4pdt91KLmhMzgxt9bz61mH80695Y8a3BWHU1iUcp4yM8DKdDtvMuQAkA_QQxKGNlogSWoxSRhl1F4WOwOBgpVpe_5sf19VNRfoON5RARbRHN4PLm4aCdbyGe-jJxXjceyoeIpa8-wZetwoZPkcff0LiXiHRLwscIVEXC5xj-AmEjEgEddIxAaJ-Lw8tjjENQ5foPGH9-Ne4lWdO7y5IKGnJCeKR2A76lDmXV8XQrMoKhQrVE5ZGBZ-HulQKMW0LMIs4JJFBdXczwQPpaAv0d5iudCvEJY6UMpneZZ38yAkWkSCay2popRxEYgDxN1jSq9ddZb0jrw6QEfbx5pWf-l1SgScLxgQ8fq-5x6iRzvIH6G9crXRb8BuLeVbi4rfxwye_Q |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dehydrogenative+Conversion+of+Methane+to+C2+Hydrocarbons+and+Aromatics+over+Pt%2FAl2O3+Catalysts&rft.jtitle=Journal+of+the+Japan+Petroleum+Institute&rft.au=OGIHARA%2C+Hitoshi&rft.au=YOSHIDA-HIRAHARA%2C+Miru&rft.au=KUROKAWA%2C+Hideki&rft.au=TAKAMURA%2C+Riku&rft.date=2023-09-01&rft.pub=The+Japan+Petroleum+Institute&rft.issn=1346-8804&rft.eissn=1349-273X&rft.volume=66&rft.issue=5&rft.spage=162&rft.epage=170&rft_id=info:doi/10.1627%2Fjpi.66.162&rft.externalDocID=article_jpi_66_5_66_162_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8804&client=summon |