CXCR2 modulates bone marrow vascular repair and haematopoietic recovery post‐transplant
Summary Murine models of bone marrow transplantation show that pre‐conditioning regimens affect the integrity of the bone marrow endothelium and that the repair of this vascular niche is an essential pre‐requisite for successful haematopoietic stem and progenitor cell engraftment. Little is known ab...
Saved in:
Published in | British journal of haematology Vol. 169; no. 4; pp. 552 - 564 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley and Sons Inc
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Murine models of bone marrow transplantation show that pre‐conditioning regimens affect the integrity of the bone marrow endothelium and that the repair of this vascular niche is an essential pre‐requisite for successful haematopoietic stem and progenitor cell engraftment. Little is known about the angiogenic pathways that play a role in the repair of the human bone marrow vascular niche. We therefore established an in vitro humanized model, composed of bone marrow stromal and endothelial cells and have identified several pro‐angiogenic factors, VEGFA, ANGPT1, CXCL8 and CXCL16, produced by the stromal component of this niche. We demonstrate for the first time that addition of CXCL8 or inhibition of its receptor, CXCR2, modulates blood vessel formation in our bone marrow endothelial niche model. Compared to wild type, Cxcr2−/− mice displayed a reduction in bone marrow cellularity and delayed platelet and leucocyte recovery following myeloablation and bone marrow transplantation. The delay in bone marrow recovery correlated with impaired bone marrow vascular repair. Taken together, our data demonstrate that CXCR2 regulates bone marrow blood vessel repair/regeneration and haematopoietic recovery, and clinically may be a therapeutic target for improving bone marrow transplantation. |
---|---|
AbstractList | Murine models of bone marrow transplantation show that pre‐conditioning regimens affect the integrity of the bone marrow endothelium and that the repair of this vascular niche is an essential pre‐requisite for successful haematopoietic stem and progenitor cell engraftment. Little is known about the angiogenic pathways that play a role in the repair of the human bone marrow vascular niche. We therefore established an
in vitro
humanized model, composed of bone marrow stromal and endothelial cells and have identified several pro‐angiogenic factors,
VEGFA
,
ANGPT
1,
CXCL
8 and
CXCL
16, produced by the stromal component of this niche. We demonstrate for the first time that addition of
CXCL
8 or inhibition of its receptor,
CXCR
2, modulates blood vessel formation in our bone marrow endothelial niche model. Compared to wild type,
Cxcr2
−/−
mice displayed a reduction in bone marrow cellularity and delayed platelet and leucocyte recovery following myeloablation and bone marrow transplantation. The delay in bone marrow recovery correlated with impaired bone marrow vascular repair. Taken together, our data demonstrate that
CXCR
2 regulates bone marrow blood vessel repair/regeneration and haematopoietic recovery, and clinically may be a therapeutic target for improving bone marrow transplantation. Murine models of bone marrow transplantation show that pre-conditioning regimens affect the integrity of the bone marrow endothelium and that the repair of this vascular niche is an essential pre-requisite for successful haematopoietic stem and progenitor cell engraftment. Little is known about the angiogenic pathways that play a role in the repair of the human bone marrow vascular niche. We therefore established an in vitro humanized model, composed of bone marrow stromal and endothelial cells and have identified several pro-angiogenic factors, VEGFA, ANGPT1, CXCL8 and CXCL16, produced by the stromal component of this niche. We demonstrate for the first time that addition of CXCL8 or inhibition of its receptor, CXCR2, modulates blood vessel formation in our bone marrow endothelial niche model. Compared to wild type, Cxcr2(-/-) mice displayed a reduction in bone marrow cellularity and delayed platelet and leucocyte recovery following myeloablation and bone marrow transplantation. The delay in bone marrow recovery correlated with impaired bone marrow vascular repair. Taken together, our data demonstrate that CXCR2 regulates bone marrow blood vessel repair/regeneration and haematopoietic recovery, and clinically may be a therapeutic target for improving bone marrow transplantation. Summary Murine models of bone marrow transplantation show that pre‐conditioning regimens affect the integrity of the bone marrow endothelium and that the repair of this vascular niche is an essential pre‐requisite for successful haematopoietic stem and progenitor cell engraftment. Little is known about the angiogenic pathways that play a role in the repair of the human bone marrow vascular niche. We therefore established an in vitro humanized model, composed of bone marrow stromal and endothelial cells and have identified several pro‐angiogenic factors, VEGFA, ANGPT1, CXCL8 and CXCL16, produced by the stromal component of this niche. We demonstrate for the first time that addition of CXCL8 or inhibition of its receptor, CXCR2, modulates blood vessel formation in our bone marrow endothelial niche model. Compared to wild type, Cxcr2−/− mice displayed a reduction in bone marrow cellularity and delayed platelet and leucocyte recovery following myeloablation and bone marrow transplantation. The delay in bone marrow recovery correlated with impaired bone marrow vascular repair. Taken together, our data demonstrate that CXCR2 regulates bone marrow blood vessel repair/regeneration and haematopoietic recovery, and clinically may be a therapeutic target for improving bone marrow transplantation. Murine models of bone marrow transplantation show that pre-conditioning regimens affect the integrity of the bone marrow endothelium and that the repair of this vascular niche is an essential pre-requisite for successful haematopoietic stem and progenitor cell engraftment. Little is known about the angiogenic pathways that play a role in the repair of the human bone marrow vascular niche. We therefore established an in vitro humanized model, composed of bone marrow stromal and endothelial cells and have identified several pro-angiogenic factors, VEGFA, ANGPT1, CXCL8 and CXCL16, produced by the stromal component of this niche. We demonstrate for the first time that addition of CXCL8 or inhibition of its receptor, CXCR2, modulates blood vessel formation in our bone marrow endothelial niche model. Compared to wild type, Cxcr2 super(-/-) mice displayed a reduction in bone marrow cellularity and delayed platelet and leucocyte recovery following myeloablation and bone marrow transplantation. The delay in bone marrow recovery correlated with impaired bone marrow vascular repair. Taken together, our data demonstrate that CXCR2 regulates bone marrow blood vessel repair/regeneration and haematopoietic recovery, and clinically may be a therapeutic target for improving bone marrow transplantation. |
Author | Channon, Keith Sweeney, Dominic Fisher, Nita Grabowska, Rita Hale, Sarah J. M. Watt, Suzanne M. Zhang, Youyi Pepperell, Emma Garde, Mark Martin‐Rendon, Enca Hale, Ashley B. H. |
AuthorAffiliation | 1 Stem Cell Research Laboratory NHS Blood and Transplant John Radcliffe Hospital Oxford UK 3 Cardiovascular Medicine Radcliffe Department of Medicine University of Oxford John Radcliffe Hospital Oxford UK 2 Nuffield Division of Clinical and Laboratory Sciences Radcliffe Department of Medicine University of Oxford John Radcliffe Hospital Oxford UK |
AuthorAffiliation_xml | – name: 2 Nuffield Division of Clinical and Laboratory Sciences Radcliffe Department of Medicine University of Oxford John Radcliffe Hospital Oxford UK – name: 1 Stem Cell Research Laboratory NHS Blood and Transplant John Radcliffe Hospital Oxford UK – name: 3 Cardiovascular Medicine Radcliffe Department of Medicine University of Oxford John Radcliffe Hospital Oxford UK |
Author_xml | – sequence: 1 givenname: Sarah J. M. surname: Hale fullname: Hale, Sarah J. M. organization: John Radcliffe Hospital – sequence: 2 givenname: Ashley B. H. surname: Hale fullname: Hale, Ashley B. H. organization: John Radcliffe Hospital – sequence: 3 givenname: Youyi surname: Zhang fullname: Zhang, Youyi organization: John Radcliffe Hospital – sequence: 4 givenname: Dominic surname: Sweeney fullname: Sweeney, Dominic organization: John Radcliffe Hospital – sequence: 5 givenname: Nita surname: Fisher fullname: Fisher, Nita organization: John Radcliffe Hospital – sequence: 6 givenname: Mark surname: Garde fullname: Garde, Mark organization: John Radcliffe Hospital – sequence: 7 givenname: Rita surname: Grabowska fullname: Grabowska, Rita organization: John Radcliffe Hospital – sequence: 8 givenname: Emma surname: Pepperell fullname: Pepperell, Emma organization: John Radcliffe Hospital – sequence: 9 givenname: Keith surname: Channon fullname: Channon, Keith organization: John Radcliffe Hospital – sequence: 10 givenname: Enca surname: Martin‐Rendon fullname: Martin‐Rendon, Enca organization: John Radcliffe Hospital – sequence: 11 givenname: Suzanne M. surname: Watt fullname: Watt, Suzanne M. organization: John Radcliffe Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25757087$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctOwzAQtBAIyuPAD6AcuYR6_Yp9QYIKKAgJCXGAk-WkDk2VxMFOW_XGJ_CNfAnmKTixl13tjEazO9tovXWtRWgf8BHEGuaz6RFQSvkaGgAVPCXAYB0NMMZZCpjJLbQdwgxjoJjDJtoiPOMZltkAPYzuR7ckadxkXpvehiSP0kljvHfLZGFCEdc-8bYzlU9MO0mmxjamd52rbF8VESncwvpV0rnQvz6_9N60oatN2--ijdLUwe599R10d352Nxqn1zcXl6OT63TGGOapEqQsytLmghkFE2uFJIoamktFMMkYyYBmggAGXAgiFGUqV4aCLCmnEugOOv6U7eZ5YyeFbaOFWne-ikestDOV_ou01VQ_uoVmgjOFVRQ4_BLw7mluQ6-bKhS2jjdYNw8aJJaCCcXk_1SRCa4EFe_Ug9-2fvx8fz4Shp-EZVXb1Q8OWL9HqmOk-iNSfXo1_hjoG5Evlig |
ContentType | Journal Article |
Copyright | 2015 The Authors. published by John Wiley & Sons Ltd. 2015 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2015 The Authors. published by John Wiley & Sons Ltd. – notice: 2015 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 5PM |
DOI | 10.1111/bjh.13335 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | S. J. M. Hale et al |
EISSN | 1365-2141 |
EndPage | 564 |
ExternalDocumentID | 25757087 BJH13335 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Institute of Health Research funderid: RP‐PG‐0310‐1003; RP‐PG‐0310‐1001 – fundername: NHS Blood and Transplant Trust Fund funderid: TF034 – fundername: British Heart Foundation – fundername: Oxford NIHR Biomedical Research Centre – fundername: British Heart Foundation grantid: RG/12/5/29576 – fundername: Department of Health grantid: RP-PG-0310-1001 – fundername: Department of Health grantid: RP-PG-0310-1003 – fundername: Wellcome Trust grantid: 090532 – fundername: National Institute of Health Research grantid: RP‐PG‐0310‐1003; RP‐PG‐0310‐1001 – fundername: NHS Blood and Transplant Trust Fund grantid: TF034 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1KJ 1OB 1OC 23N 24P 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAYEP AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EGARE EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IX1 J0M J5H K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 V8K V9Y VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 5PM |
ID | FETCH-LOGICAL-j4405-962fcffeb64a91dee68293a3b892027427137621010c6269349b9a318f353813 |
IEDL.DBID | 24P |
ISSN | 0007-1048 |
IngestDate | Tue Sep 17 20:49:26 EDT 2024 Fri Aug 16 08:19:06 EDT 2024 Sat Aug 17 02:59:19 EDT 2024 Sat Sep 28 08:23:11 EDT 2024 Sat Aug 24 00:51:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | stem cell niche CXCL8 bone marrow vascular niche bone marrow transplantation CXCR2 |
Language | English |
License | Attribution 2015 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j4405-962fcffeb64a91dee68293a3b892027427137621010c6269349b9a318f353813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Joint last and senior authors. The copyright line for this article was changed on 19 May 2016 after original online publication. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbjh.13335 |
PMID | 25757087 |
PQID | 1676596368 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4654909 proquest_miscellaneous_1808646948 proquest_miscellaneous_1676596368 pubmed_primary_25757087 wiley_primary_10_1111_bjh_13335_BJH13335 |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | British journal of haematology |
PublicationTitleAlternate | Br J Haematol |
PublicationYear | 2015 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2010; 12 2007; 18 2010; 10 2003; 996 2010; 107 2000; 115 2011; 82 1997; 25 2010; 126 1968; 127 1978; 4 1994; 22 2011; 10 2006; 6 2011; 35 2011; 17 2011; 3 2013; 8 2003; 278 2011; 6 2012; 11 2003; 11 2004; 10 1994; 8 1994; 265 2012; 157 2013; 11 2000; 30 2005; 106 2007; 131 2011; 22 2013; 495 2009; 4 2010; 5 2008; 132 2007; 25 2009; 18 2005; 36 |
References_xml | – volume: 25 start-page: 2945 year: 2007 end-page: 2955 article-title: The role of the donor in the repair of the marrow vascular niche following hematopoietic stem cell transplant publication-title: Stem Cells – volume: 115 start-page: 234 year: 2000 end-page: 244 article-title: Delayed wound healing in CXCR2 knockout mice publication-title: The Journal of Investigative Dermatology – volume: 495 start-page: 227 year: 2013 end-page: 230 article-title: CXCL12 in early mesenchymal progenitors is required for haematopoietic stem‐cell maintenance publication-title: Nature – volume: 996 start-page: 49 year: 2003 end-page: 60 article-title: Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from bone marrow microenvironment publication-title: Annals of the New York Academy of Sciences – volume: 17 start-page: 895 year: 2011 end-page: 906 article-title: A comparison of methods for quantifying angiogenesis in the Matrigel assay in vitro publication-title: Tissue Engineering Part C Methods – volume: 36 start-page: 840 year: 2005 end-page: 853 article-title: Stromal cell‐derived factor‐1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts publication-title: Bone – volume: 106 start-page: 505 year: 2005 end-page: 513 article-title: Tie2 activation contributes to hemangiogenic regeneration after myelosuppression publication-title: Blood – volume: 126 start-page: 328 year: 2010 end-page: 336 article-title: Small interfering RNA‐mediated CXCR1 or CXCR2 knock‐down inhibits melanoma tumor growth and invasion publication-title: International Journal of Cancer – volume: 157 start-page: 299 year: 2012 end-page: 311 article-title: A novel function for the haemopoietic supportive murine bone marrow MS‐5 mesenchymal stromal cell line in promoting human vasculogenesis and angiogenesis publication-title: British Journal of Haematology – volume: 5 start-page: e9093 year: 2010 article-title: Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model publication-title: PLoS ONE – volume: 278 start-page: 8508 year: 2003 end-page: 8515 article-title: Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2 publication-title: Journal of Biological Chemistry – volume: 11 start-page: 213 year: 2003 end-page: 219 article-title: Impaired healing of nitrogen mustard wounds in CXCR2 null mice publication-title: Wound Repair and Regeneration – volume: 127 start-page: 205 year: 1968 end-page: 214 article-title: Hemopoietic colony studies. V. Effect of hemopoietic organ stroma on differentiation of pluripotent stem cells publication-title: Journal of Experimental Medicine – volume: 107 start-page: 1020 year: 2010 end-page: 1028 article-title: Recreating the perivascular niche ex vivo using a microfluidic approach publication-title: Biotechnology and Bioengineering – volume: 25 start-page: 542 year: 1997 end-page: 547 article-title: Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects publication-title: Experimental Hematology – volume: 495 start-page: 231 year: 2013 end-page: 235 article-title: Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches publication-title: Nature – volume: 10 start-page: 64 year: 2004 end-page: 71 article-title: Chemokine‐mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis publication-title: Nature Medicine – volume: 6 start-page: e16767 year: 2011 article-title: The role of vascular actors in two dimensional dialogue of human bone marrow stromal cell and endothelial cell for inducing self‐assembled network publication-title: PLoS ONE – volume: 82 start-page: 318 year: 2011 end-page: 325 article-title: CXCR1 and CXCR2 silencing modulates CXCL8‐dependent endothelial cell proliferation, migration and capillary‐like structure formation publication-title: Microvascular Research – volume: 8 start-page: 523 year: 1994 end-page: 529 article-title: Angiogenic factors are hematopoietic growth factors and vice versa publication-title: Leukemia – volume: 11 start-page: 201 year: 2012 end-page: 206 article-title: Bone marrow niches for hematopoietic stem cells and immune cells publication-title: Inflammation & Allergy: Drug Targets – volume: 132 start-page: 598 year: 2008 end-page: 611 article-title: Stem cells and niches: mechanisms that promote stem cell maintenance throughout life publication-title: Cell – volume: 18 start-page: 5014 year: 2007 end-page: 5023 article-title: Transactivation of vascular endothelial growth factor receptor‐2 by interleukin‐8 (IL‐8/CXCL8) is required for IL‐8/CXCL8‐induced endothelial permeability publication-title: Molecular Biology of the Cell – volume: 6 start-page: 93 year: 2006 end-page: 106 article-title: Bone‐marrow haematopoietic‐stem‐cell niches publication-title: Nature Reviews Immunology – volume: 18 start-page: 359 year: 2009 end-page: 375 article-title: The impact of proliferative potential of umbilical cord‐derived endothelial progenitor cells and hypoxia on vascular tubule formation in vitro publication-title: Stem Cells and Development – volume: 3 start-page: 5 year: 2011 article-title: Dermal fibroblasts display similar phenotypic and differentiation capacity to fat‐derived mesenchymal stem cells, but differ in anti‐inflammatory and angiogenic potential publication-title: Vascular Cell – volume: 8 start-page: e54747 year: 2013 article-title: Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization publication-title: PLoS ONE – volume: 4 start-page: 7 year: 1978 end-page: 25 article-title: The relationship between the spleen colony‐forming cell and the haemopoietic stem cell publication-title: Blood Cells – volume: 131 start-page: 324 year: 2007 end-page: 336 article-title: Self‐renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment publication-title: Cell – volume: 265 start-page: 682 year: 1994 end-page: 684 article-title: Neutrophil and B cell expansion in mice that lack the murine IL‐8 receptor homolog publication-title: Science – volume: 35 start-page: 201 year: 2011 end-page: 208 article-title: CXCL8 enhances the angiogenic activity of umbilical cord blood‐derived outgrowth endothelial cells in vitro publication-title: Cell Biology International – volume: 12 start-page: 1046 year: 2010 end-page: 1056 article-title: Angiocrine factors from Akt‐activated endothelial cells balance self‐renewal and differentiation of haematopoietic stem cells publication-title: Nature Cell Biology – volume: 22 start-page: 174 year: 1994 end-page: 177 article-title: Sl/Sld hematopoietic progenitors are deficient in situ publication-title: Experimental Hematology – volume: 4 start-page: 263 year: 2009 end-page: 274 article-title: Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2‐mediated regeneration of sinusoidal endothelial cells publication-title: Cell Stem Cell – volume: 10 start-page: 138 year: 2010 end-page: 146 article-title: Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors publication-title: Nature Reviews Cancer – volume: 22 start-page: 242 year: 2011 end-page: 257 article-title: Effects of endothelial cells on human mesenchymal stem cell activity in a three‐dimensional in vitro model publication-title: European Cells & Materials – volume: 10 start-page: 40 year: 2011 article-title: Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis publication-title: Journal of Carcinogenesis – volume: 11 start-page: 707 year: 2013 end-page: 720 article-title: A novel application for a 3‐dimensional timelapse assay that distinguishes chemotactic from chemokinetic responses of hematopoietic CD133(+) stem/progenitor cells publication-title: Stem Cell Research – volume: 30 start-page: 618 year: 2000 end-page: 629 article-title: Immortalisation of human bone marrow endothelial cells: characterisation of new cell lines publication-title: European Journal of Clinical Investigation |
SSID | ssj0013051 |
Score | 2.249885 |
Snippet | Summary
Murine models of bone marrow transplantation show that pre‐conditioning regimens affect the integrity of the bone marrow endothelium and that the... Murine models of bone marrow transplantation show that pre-conditioning regimens affect the integrity of the bone marrow endothelium and that the repair of... Murine models of bone marrow transplantation show that pre‐conditioning regimens affect the integrity of the bone marrow endothelium and that the repair of... |
SourceID | pubmedcentral proquest pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 552 |
SubjectTerms | Angiogenic Proteins - genetics Angiogenic Proteins - metabolism Animals Bone Marrow - blood supply Bone Marrow Transplantation bone marrow vascular niche Cell Line CXCL8 CXCR2 Haematological Malignancy Hematopoiesis Hematopoietic Stem Cell Transplantation Human Umbilical Vein Endothelial Cells Humans Mice Mice, Knockout Neovascularization, Physiologic Receptors, Interleukin-8B - genetics Receptors, Interleukin-8B - metabolism Research Paper stem cell niche Transplantation Conditioning |
Title | CXCR2 modulates bone marrow vascular repair and haematopoietic recovery post‐transplant |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbjh.13335 https://www.ncbi.nlm.nih.gov/pubmed/25757087 https://search.proquest.com/docview/1676596368 https://search.proquest.com/docview/1808646948 https://pubmed.ncbi.nlm.nih.gov/PMC4654909 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qBfEivq0vVvDgJZJmH9nFk1ZLKVREKtRT2E02tKJJ6ePgzZ_gb_SXOLtJa0URLyGQ2RBmdl6Z2W8QOg1DxrViiZeI1Hg0TmNPMB17QeDzhAjwuW58W-eWtx5ou8d6FXQxOwtT4EPMf7hZzXD22iq40uMFJddP_XNIsAhbQssWMcYC5wf07quE4LNyXF4ItoaKElbItvHMl_4WVv7sjlyMWp3baa6jtTJexJeFgDdQxWSbaKVTVsS30GOj17gP8Eue2DlcZox1nhn84qAV8azNFI_A6QxGWGUJ7iuL0poP84E9vohtQgy7-RUP8_Hk4-194sDOn4Hf26jbvOk2Wl45LsF7ohB2eZIHaZymRnOqZD0xhgvw5YpoIQNXkYV8FEwf6KAfQxojCZVaKtDplIDVq5MdVM3gE_cQDgU4dSKJTElMqVQK3hhLJrVJlamrpIZOZmyLYDfaEoPKTD4dR3UecgY6zcUfNALSKMjKKdDsFqyOhgW0RgQGhIW-CGso_CaEOYFFw_7-JBv0HSq2BYaTvqyhMyeu-YpZlgNCj5zQo6t2y93s_5_0AK1CpMSKTsdDVJ2MpuYIopGJPna7Dq7X98EnSU3dbw |
link.rule.ids | 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BlYALank1tJRF4sDFyPE-vCv10kZEaSAIoSCFk7Vrr5WgYkdJOHDrT-hv7C_p7NoJIBDiZsmzlrXz3pn9BuAojrkwmmdBJnMbsDRPA8lNGkRRKDIq0ef68W29C9G5Zt0BHyzB9_ldmAofYnHg5jTD22un4O5A-omWm9vhCWZYlC_DByZQEB2uM7t8rCGEvJ6XF6OxYbLGFXJ9PIulr8WVL9sjn4at3u-0P8JGHTCSHxWHP8GSLTZhtVeXxLfgpjVoXUXkrszcIC47JaYsLLnz2Ipk3mdKJuh1RhOii4wMtYNpLcflyN1fJC4jRnF-IONyOvv35-_Mo53_xg3fhn77tN_qBPW8hOCWYdwVKBHlaZ5bI5hWzcxaIdGZa2qkinxJFhNStH2ohGGKeYyiTBmlUalzimavSXdgpcBf_AwklujVqaIqpyljSmv8Yqq4MjbXtqmzBhzOty1BcXQ1Bl3Y8n6aNEUsOCq1kG_QSMyjMC1nSLNbbXUyrrA1ErQgPA5l3ID4GRMWBA4O-_mbYjT0sNgOGU6FqgHHnl2LFfM0B5meeKYnP7sd_7D3ftIDWOv0e-fJ-a-Lsy-wjmETr9oev8LKbHJv9zE0mZlvXgL_AxzV3_o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVcKM-y5WUkDlyyysaP2OJUFlZLoRWqirRISJGd2NotNFntZg9w6k_ob-wvYewkSwsIIW6RMrYcjWf8TWb8DcDzNOXCaF5EhXQ2YrnLI8lNHiVJLAoq8cwN7dsODsX4I9uf8MkGvOzuwjT8EOsfbt4ygr_2Bj4v3CUjNyfTPgZYlF-D60wg8vWI6Cj5mUKIedsuL0Vfw2RLK-TLeNZD_wQrf6-OvIxaw7Ez2obP3YKbapMv_VVt-vn3X7gc__OLbsHNFo6SvWb_3IYNW96BrYM24X4XPg0nw6OEnFaFb_Nll8RUpSWngbmRdFWsZIFn2mxBdFmQqfYksNW8mvnbkcTH22gs38i8WtYXZ-d14FL_iuq8B8ejN8fDcdR2Y4hOGKK6SInE5c5ZI5hWg8JaIREqaGqkSkLCF8Nd9Kxo4nGOUZKiTBml0WU4ik51QO_DZolLfAAklYgZqKLK0ZwxpTXOmCuujHXaDnTRg2edVjLc7D6DoUtbrZbZQKSCo8sQ8i8yEqM0DPoZyuw0mszmDXNHhv6Jp7FMe5Be0fFawJNtX31TzqaBdNvzzqlY9eBFUOF6RBdEofKyoLzs1f44POz-u-hT2PrwepS9f3v47iHcQEzGm5rKR7BZL1b2MeKe2jwJ-_sHDJ7_SA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CXCR2+modulates+bone+marrow+vascular+repair+and+haematopoietic+recovery+post-transplant&rft.jtitle=British+journal+of+haematology&rft.au=Hale%2C+Sarah+JM&rft.au=Hale%2C+Ashley+BH&rft.au=Zhang%2C+Youyi&rft.au=Sweeney%2C+Dominic&rft.date=2015-05-01&rft.issn=0007-1048&rft.eissn=1365-2141&rft.volume=169&rft.issue=4&rft.spage=552&rft.epage=564&rft_id=info:doi/10.1111%2Fbjh.13335&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1048&client=summon |