Alternative Semantic Representations for Zero-Shot Human Action Recognition

A proper semantic representation for encoding side information is key to the success of zero-shot learning. In this paper, we explore two alternative semantic representations especially for zero-shot human action recognition: textual descriptions of human actions and deep features extracted from sti...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases Vol. 10534; pp. 87 - 102
Main Authors Wang, Qian, Chen, Ke
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319712489
9783319712482
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-71249-9_6

Cover

Loading…
Abstract A proper semantic representation for encoding side information is key to the success of zero-shot learning. In this paper, we explore two alternative semantic representations especially for zero-shot human action recognition: textual descriptions of human actions and deep features extracted from still images relevant to human actions. Such side information are accessible on Web with little cost, which paves a new way in gaining side information for large-scale zero-shot human action recognition. We investigate different encoding methods to generate semantic representations for human actions from such side information. Based on our zero-shot visual recognition method, we conducted experiments on UCF101 and HMDB51 to evaluate two proposed semantic representations. The results suggest that our proposed text- and image-based semantic representations outperform traditional attributes and word vectors considerably for zero-shot human action recognition. In particular, the image-based semantic representations yield the favourable performance even though the representation is extracted from a small number of images per class. Code related to this chapter is available at: http://staff.cs.manchester.ac.uk/~kechen/BiDiLEL/ Data related to this chapter are available at: http://staff.cs.manchester.ac.uk/~kechen/ASRHAR/
AbstractList A proper semantic representation for encoding side information is key to the success of zero-shot learning. In this paper, we explore two alternative semantic representations especially for zero-shot human action recognition: textual descriptions of human actions and deep features extracted from still images relevant to human actions. Such side information are accessible on Web with little cost, which paves a new way in gaining side information for large-scale zero-shot human action recognition. We investigate different encoding methods to generate semantic representations for human actions from such side information. Based on our zero-shot visual recognition method, we conducted experiments on UCF101 and HMDB51 to evaluate two proposed semantic representations. The results suggest that our proposed text- and image-based semantic representations outperform traditional attributes and word vectors considerably for zero-shot human action recognition. In particular, the image-based semantic representations yield the favourable performance even though the representation is extracted from a small number of images per class. Code related to this chapter is available at: http://staff.cs.manchester.ac.uk/~kechen/BiDiLEL/ Data related to this chapter are available at: http://staff.cs.manchester.ac.uk/~kechen/ASRHAR/
Author Wang, Qian
Chen, Ke
Author_xml – sequence: 1
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  email: qian.wang@manchester.ac.uk
– sequence: 2
  givenname: Ke
  surname: Chen
  fullname: Chen, Ke
BookMark eNqNkMtOwzAQRQ0URFv6BWzyA4YZTxLby6oCiqiERGHDxkpcpw9KXOKU78ehwJrVWHfuGclnwHq1rx1jlwhXCCCvtVScOKHmEkWquTb5ERvFlGL2Helj1scckROl-oQNfhdK91gfCATXMqUzNkBAlUqBuTpnoxA2AICaACX02cN427qmLtr1p0vm7r2o27VNntyuccHVbcx9HZLKN8mrazyfr3ybTPexloxtt4tV65f1untfsNOq2AY3-plD9nJ78zyZ8tnj3f1kPOMb0qrlQmSupEVJpc1yuxBWQ5GSWFRyUbnc5laJXBJUVQYlKZkK6VRRliCsFRUIR0OGh7th16zrpWtM6f1bMAimU2eiJEMm2jDfnkxUF5n0wOwa_7F3oTWug2z8Y1Ns7arYRQ0hFoEE5AYxM5iK_2JZJiWA-sO-AI0AgWI
ContentType Book Chapter
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID FFUUA
DEWEY 006.31
DOI 10.1007/978-3-319-71249-9_6
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319712499
3319712497
EISSN 1611-3349
Editor Vens, Celine
Hollmén, Jaakko
Dzeroski, Saso
Todorovski, Ljupčo
Ceci, Michelangelo
Editor_xml – sequence: 1
  fullname: Todorovski, Ljupčo
– sequence: 2
  fullname: Ceci, Michelangelo
– sequence: 3
  fullname: Vens, Celine
– sequence: 4
  fullname: Hollmén, Jaakko
– sequence: 5
  fullname: Dzeroski, Saso
EndPage 102
ExternalDocumentID EBC6303206_115_142
EBC5577008_115_142
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABBVZ
ABHTH
ABQUB
ACDJR
AEDXK
AEJLV
AEKFX
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CVWCR
CZZ
FFUUA
I4C
IEZ
SBO
SWYDZ
TPJZQ
TSXQS
Z5O
Z7R
Z7U
Z7W
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-j398t-225eb3db3bc56cd2c90a432df7dfe6c6c826730ff50b387427e8abb02cc2f02e3
ISBN 3319712489
9783319712482
ISSN 0302-9743
IngestDate Tue Jul 29 20:20:36 EDT 2025
Wed May 28 23:51:48 EDT 2025
Wed May 28 23:38:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.D343Q334-342T
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j398t-225eb3db3bc56cd2c90a432df7dfe6c6c826730ff50b387427e8abb02cc2f02e3
OCLC 1018472168
OpenAccessLink https://www.research.manchester.ac.uk/portal/en/publications/alternative-semantic-representations-for-zeroshot-human-action-recognition(6a30151c-69f8-4a90-928c-c575b36caddf).html
PQID EBC5577008_115_142
PageCount 16
ParticipantIDs springer_books_10_1007_978_3_319_71249_9_6
proquest_ebookcentralchapters_6303206_115_142
proquest_ebookcentralchapters_5577008_115_142
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part I
PublicationTitle Machine Learning and Knowledge Discovery in Databases
PublicationYear 2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001930170
ssj0002792
Score 2.3746626
Snippet A proper semantic representation for encoding side information is key to the success of zero-shot learning. In this paper, we explore two alternative semantic...
SourceID springer
proquest
SourceType Publisher
StartPage 87
SubjectTerms Fisher Vector
Human action recognition
Image deep representation
Semantic representation
Textual description representation
Zero-shot learning
Title Alternative Semantic Representations for Zero-Shot Human Action Recognition
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5577008&ppg=142
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6303206&ppg=142
http://link.springer.com/10.1007/978-3-319-71249-9_6
Volume 10534
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2ywVx4C3e8oETlVFiO3F84LAqRVW3VAJaqLhYseOoQrBbdVMO_HrGryQbkFC5RKvI2mTn887LM98g9FLnrKHMZITLvCK8MZZosMtEGp03wpGMefri98flwSk_PCvOZrOLUdXSVadfm19_7Sv5H1ThHuDqumSvgWz_pXADPgO-cAWE4TpxfrfTrHHCkCuDtIkhNbQaLlOKzNFqGlee6fv63tZd7exV70B_iWniD6PdsRcbNZZb-2jxPaYMf1pQLD8ACF96fzG0La08pcPuV3u5Jp_O1108GFiEIeQfU4VSxN8Jxm7eHMWzi-N150vCdtN4iaRtxumIXEzSESkdOUloDjm1rfiVgQIQ4GFU4xQnAx0NUU5Qezao5dKRLbJAbhpVbbTTwWjnvm37T3swLgFx7VruYZJIVe6gHVEVc3RjsX949HnIyknmCIV6W-7oFcM5VHgn1x2U3lkG_qbhN_SkVoG3ePLErRBmcurunZmTO-iWa3DBrvMEhHcXzezqHrqd5I-j_O-j5Qh6nKDHE-gxQI976LGHHgfo8Qj6B-j03f7J3gGJszfINyarjoCat5o1mmlTlKahRmY1Z7RpRdPa0pQGwlIwDm1bZJpVglNhq1rrjBpD24xa9hDNV-uVfYRwayVra3Dz87riYDM0bzV4-U3FtOANLx4jkgSjfIVALEs2QQwbVRRCuGGpELxApEr_ub4Et4xm5bD-VZK2css3KlF1A0qKKUBJeZQUoPTkOoufopvDX-AZmneXV_Y5-KidfhE31m9evosz
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.au=Wang%2C+Qian&rft.au=Chen%2C+Ke&rft.atitle=Alternative+Semantic+Representations+for+Zero-Shot+Human+Action+Recognition&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2017-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319712482&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=87&rft.epage=102&rft_id=info:doi/10.1007%2F978-3-319-71249-9_6
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5577008-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6303206-l.jpg