PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex
mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain larg...
Saved in:
Published in | Cancer discovery Vol. 5; no. 11; pp. 1194 - 1209 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2159-8290 2159-8274 2159-8290 |
DOI | 10.1158/2159-8290.CD-15-0460 |
Cover
Loading…
Abstract | mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the pleckstrin homology (PH) domain of SIN1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5)P3, but not other PtdInsPn species, interacts with SIN1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical SIN1 residues that mediate PtdIns(3,4,5)P3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the SIN1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate AKT in a manner that is regulated temporally and spatially by PtdIns(3,4,5)P3.
The SIN1-PH domain interacts with the mTOR kinase domain to suppress mTOR activity, and PtdIns(3,4,5)P3 binds the SIN1-PH domain to release its inhibition on the mTOR kinase domain, leading to mTORC2 activation. Cancer patient-derived SIN1-PH domain mutations gain oncogenicity by loss of suppressing mTOR activity as a means to facilitate tumorigenesis. |
---|---|
AbstractList | mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the pleckstrin homology (PH) domain of SIN1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5)P3, but not other PtdInsPn species, interacts with SIN1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical SIN1 residues that mediate PtdIns(3,4,5)P3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the SIN1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate AKT in a manner that is regulated temporally and spatially by PtdIns(3,4,5)P3.UNLABELLEDmTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the pleckstrin homology (PH) domain of SIN1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5)P3, but not other PtdInsPn species, interacts with SIN1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical SIN1 residues that mediate PtdIns(3,4,5)P3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the SIN1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate AKT in a manner that is regulated temporally and spatially by PtdIns(3,4,5)P3.The SIN1-PH domain interacts with the mTOR kinase domain to suppress mTOR activity, and PtdIns(3,4,5)P3 binds the SIN1-PH domain to release its inhibition on the mTOR kinase domain, leading to mTORC2 activation. Cancer patient-derived SIN1-PH domain mutations gain oncogenicity by loss of suppressing mTOR activity as a means to facilitate tumorigenesis.SIGNIFICANCEThe SIN1-PH domain interacts with the mTOR kinase domain to suppress mTOR activity, and PtdIns(3,4,5)P3 binds the SIN1-PH domain to release its inhibition on the mTOR kinase domain, leading to mTORC2 activation. Cancer patient-derived SIN1-PH domain mutations gain oncogenicity by loss of suppressing mTOR activity as a means to facilitate tumorigenesis. mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the pleckstrin homology (PH) domain of SIN1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5)P3, but not other PtdInsPn species, interacts with SIN1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical SIN1 residues that mediate PtdIns(3,4,5)P3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the SIN1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate AKT in a manner that is regulated temporally and spatially by PtdIns(3,4,5)P3. The SIN1-PH domain interacts with the mTOR kinase domain to suppress mTOR activity, and PtdIns(3,4,5)P3 binds the SIN1-PH domain to release its inhibition on the mTOR kinase domain, leading to mTORC2 activation. Cancer patient-derived SIN1-PH domain mutations gain oncogenicity by loss of suppressing mTOR activity as a means to facilitate tumorigenesis. mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the PH domain of Sin1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5) P 3 , but not other PtdIns P n species, interacts with Sin1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical Sin1 residues that mediate PtdIns(3,4,5) P 3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the Sin1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate Akt in a manner that is regulated temporally and spatially by PtdIns(3,4,5) P 3 . |
Author | Blenis, John Cantley, Lewis C Su, Bing Chin, Y Rebecca Zhang, Jinfang Wei, Wenyi Liu, Pengda Ogura, Kohei Toker, Alex Gan, Wenjian Guo, Jianping Wang, Bin |
AuthorAffiliation | 1 Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 3 Cancer Center at Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065 2 Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale Medical School, New Haven, CT 06520 |
AuthorAffiliation_xml | – name: 1 Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 – name: 3 Cancer Center at Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065 – name: 2 Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale Medical School, New Haven, CT 06520 |
Author_xml | – sequence: 1 givenname: Pengda surname: Liu fullname: Liu, Pengda organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts – sequence: 2 givenname: Wenjian surname: Gan fullname: Gan, Wenjian organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts – sequence: 3 givenname: Y Rebecca surname: Chin fullname: Chin, Y Rebecca organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts – sequence: 4 givenname: Kohei surname: Ogura fullname: Ogura, Kohei organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts – sequence: 5 givenname: Jianping surname: Guo fullname: Guo, Jianping organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts – sequence: 6 givenname: Jinfang surname: Zhang fullname: Zhang, Jinfang organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts – sequence: 7 givenname: Bin surname: Wang fullname: Wang, Bin organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts – sequence: 8 givenname: John surname: Blenis fullname: Blenis, John organization: Cancer Center at Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York – sequence: 9 givenname: Lewis C surname: Cantley fullname: Cantley, Lewis C organization: Cancer Center at Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York – sequence: 10 givenname: Alex surname: Toker fullname: Toker, Alex organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts – sequence: 11 givenname: Bing surname: Su fullname: Su, Bing email: wwei2@bidmc.harvard.edu, bing.su@yale.edu organization: Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut. wwei2@bidmc.harvard.edu bing.su@yale.edu – sequence: 12 givenname: Wenyi surname: Wei fullname: Wei, Wenyi email: wwei2@bidmc.harvard.edu, bing.su@yale.edu organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts. wwei2@bidmc.harvard.edu bing.su@yale.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26293922$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkNlKw0AUhgdRbK19A5FcVmjqbJnlRiipS7HQIvU6zCQTm5LMxExa9O0NWEs9N2fl-3_OFTi3zhoAbhCcIBSJe4wiGQos4SSehSgKIWXwDPSP4_OTugeG3m9hF1TSCPJL0MMMSyIx7oPpqs3m1o_ImI6juxUJZ6Y2NjO2DaZpW-xVWzgbuDxoNyao1su3GAevhVXeBLGr6tJ8XYOLXJXeDA95AN6fHtfxS7hYPs_j6SLcEi7akDMEmcwRgkjyPBOUI6NkrkSqtUk1xZFmGRWapxp3fWeeckGY1lxnKZWCDMDDL7fe6cpkaWexUWVSN0Wlmu_EqSL5v7HFJvlw-4QyglhEO8DoAGjc5874NqkKn5qyVNa4nU8QJxBiQgjrTm9PtY4if38jP1mtcV0 |
ContentType | Journal Article |
Copyright | 2015 American Association for Cancer Research. |
Copyright_xml | – notice: 2015 American Association for Cancer Research. |
DBID | CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/2159-8290.CD-15-0460 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2159-8290 |
EndPage | 1209 |
ExternalDocumentID | PMC4631654 26293922 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: K99 CA181342 – fundername: NIGMS NIH HHS grantid: R01GM094777 – fundername: NIGMS NIH HHS grantid: R01 GM089763 – fundername: NIGMS NIH HHS grantid: R01GM041890 – fundername: NCI NIH HHS grantid: R01 CA177910 – fundername: NCI NIH HHS grantid: R01CA177910 – fundername: NCI NIH HHS grantid: R00 CA157945 – fundername: NCI NIH HHS grantid: R00CA157945 – fundername: NCI NIH HHS grantid: 1K99CA181342 – fundername: NIGMS NIH HHS grantid: R01 GM094777 |
GroupedDBID | --- 53G 5VS ADBBV ADCOW AENEX AFHIN AFUMD ALMA_UNASSIGNED_HOLDINGS BR6 BTFSW CGR CUY CVF EBS ECM EIF EJD H13 KQ8 NPM OK1 RCR RHI 7X8 5PM |
ID | FETCH-LOGICAL-j378t-761069f110197fd8471ea9fa8cbbecb425b6d48b7cb2ecb15947836bb7bdc4983 |
ISSN | 2159-8290 2159-8274 |
IngestDate | Thu Aug 21 18:32:10 EDT 2025 Fri Sep 05 08:12:17 EDT 2025 Thu Apr 03 07:07:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2015 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j378t-761069f110197fd8471ea9fa8cbbecb425b6d48b7cb2ecb15947836bb7bdc4983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4631654 |
PMID | 26293922 |
PQID | 1730023336 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4631654 proquest_miscellaneous_1730023336 pubmed_primary_26293922 |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer discovery |
PublicationTitleAlternate | Cancer Discov |
PublicationYear | 2015 |
References | 15722200 - Cell Signal. 2005 Jun;17(6):761-7 9005852 - Science. 1997 Jan 31;275(5300):665-8 12150925 - Cell. 2002 Jul 26;110(2):163-75 25567906 - Science. 2015 Jan 9;347(6218):188-94 17043309 - Genes Dev. 2006 Oct 15;20(20):2820-32 24670654 - Nature. 2014 Apr 24;508(7497):541-5 16919458 - Curr Biol. 2006 Sep 19;16(18):1865-70 22053050 - Science. 2011 Nov 4;334(6056):678-83 17303383 - Cell Signal. 2007 Jun;19(6):1279-89 8702995 - J Biol Chem. 1996 Sep 6;271(36):21920-6 25561175 - Nature. 2015 Mar 26;519(7544):477-81 15851026 - Cell. 2005 Apr 22;121(2):179-93 23636326 - Nature. 2013 May 9;497(7448):217-23 22500797 - Cell. 2012 Apr 13;149(2):274-93 20832730 - Mol Cell. 2010 Sep 10;39(5):797-808 24161930 - Nat Cell Biol. 2013 Nov;15(11):1340-50 23047693 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17472-7 18497260 - Science. 2008 Jun 13;320(5882):1496-501 17613433 - Cancer Cell. 2007 Jul;12(1):9-22 25567907 - Science. 2015 Jan 9;347(6218):194-8 21157483 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35 25453101 - Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17833-8 16959574 - Cell. 2006 Sep 8;126(5):955-68 19270695 - Nat Cell Biol. 2009 Apr;11(4):397-408 12631735 - Mol Biol Cell. 2003 Mar;14(3):1204-20 22980980 - Cell. 2012 Sep 14;150(6):1196-208 15624019 - Nat Genet. 2005 Jan;37(1):19-24 21376236 - Cell. 2011 Mar 4;144(5):757-68 22504275 - Nat Cell Biol. 2012 May;14(5):542-7 26028537 - Mol Cell. 2015 Jun 18;58(6):977-88 21806543 - Biochem J. 2011 Oct 15;439(2):287-97 20535651 - Curr Top Microbiol Immunol. 2010;347:21-41 12556884 - Nature. 2003 Jan 30;421(6922):499-506 16002396 - J Biol Chem. 2005 Sep 2;280(35):30697-704 12869586 - Genes Dev. 2003 Aug 1;17(15):1829-34 18439899 - Mol Cell. 2008 Apr 25;30(2):203-13 24481632 - Protein Cell. 2014 Mar;5(3):171-7 15988011 - Mol Cell Biol. 2005 Jul;25(14):5955-64 24385483 - J Cell Biol. 2013 Nov 25;203(4):563-74 24698685 - Trends Cell Biol. 2014 Jul;24(7):400-6 21045808 - EMBO J. 2010 Dec 1;29(23):3939-51 22189424 - Nat Rev Mol Cell Biol. 2012 Jan;13(1):39-51 17233582 - Biochem Soc Symp. 2007;(74):81-93 23863151 - Biochem Soc Trans. 2013 Aug;41(4):889-95 22037461 - Biochem Biophys Res Commun. 2011 Nov 18;415(2):355-60 15268862 - Curr Biol. 2004 Jul 27;14(14):1296-302 22505404 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Apr 1;68(Pt 4):386-92 21310961 - J Biol Chem. 2011 Apr 1;286(13):10998-1002 16962653 - Cell. 2006 Oct 6;127(1):125-37 16713581 - Mol Cell. 2006 May 19;22(4):511-9 23636322 - Nature. 2013 May 9;497(7448):193-4 |
References_xml | – reference: 18497260 - Science. 2008 Jun 13;320(5882):1496-501 – reference: 22980980 - Cell. 2012 Sep 14;150(6):1196-208 – reference: 24161930 - Nat Cell Biol. 2013 Nov;15(11):1340-50 – reference: 22500797 - Cell. 2012 Apr 13;149(2):274-93 – reference: 8702995 - J Biol Chem. 1996 Sep 6;271(36):21920-6 – reference: 25567906 - Science. 2015 Jan 9;347(6218):188-94 – reference: 24385483 - J Cell Biol. 2013 Nov 25;203(4):563-74 – reference: 22504275 - Nat Cell Biol. 2012 May;14(5):542-7 – reference: 18439899 - Mol Cell. 2008 Apr 25;30(2):203-13 – reference: 17233582 - Biochem Soc Symp. 2007;(74):81-93 – reference: 16959574 - Cell. 2006 Sep 8;126(5):955-68 – reference: 23636322 - Nature. 2013 May 9;497(7448):193-4 – reference: 17303383 - Cell Signal. 2007 Jun;19(6):1279-89 – reference: 15722200 - Cell Signal. 2005 Jun;17(6):761-7 – reference: 16002396 - J Biol Chem. 2005 Sep 2;280(35):30697-704 – reference: 12556884 - Nature. 2003 Jan 30;421(6922):499-506 – reference: 25561175 - Nature. 2015 Mar 26;519(7544):477-81 – reference: 12631735 - Mol Biol Cell. 2003 Mar;14(3):1204-20 – reference: 16713581 - Mol Cell. 2006 May 19;22(4):511-9 – reference: 17043309 - Genes Dev. 2006 Oct 15;20(20):2820-32 – reference: 25453101 - Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17833-8 – reference: 24481632 - Protein Cell. 2014 Mar;5(3):171-7 – reference: 15988011 - Mol Cell Biol. 2005 Jul;25(14):5955-64 – reference: 20535651 - Curr Top Microbiol Immunol. 2010;347:21-41 – reference: 16919458 - Curr Biol. 2006 Sep 19;16(18):1865-70 – reference: 24670654 - Nature. 2014 Apr 24;508(7497):541-5 – reference: 23863151 - Biochem Soc Trans. 2013 Aug;41(4):889-95 – reference: 15851026 - Cell. 2005 Apr 22;121(2):179-93 – reference: 23047693 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17472-7 – reference: 22189424 - Nat Rev Mol Cell Biol. 2012 Jan;13(1):39-51 – reference: 12150925 - Cell. 2002 Jul 26;110(2):163-75 – reference: 22053050 - Science. 2011 Nov 4;334(6056):678-83 – reference: 9005852 - Science. 1997 Jan 31;275(5300):665-8 – reference: 21806543 - Biochem J. 2011 Oct 15;439(2):287-97 – reference: 21157483 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35 – reference: 20832730 - Mol Cell. 2010 Sep 10;39(5):797-808 – reference: 21045808 - EMBO J. 2010 Dec 1;29(23):3939-51 – reference: 22037461 - Biochem Biophys Res Commun. 2011 Nov 18;415(2):355-60 – reference: 15268862 - Curr Biol. 2004 Jul 27;14(14):1296-302 – reference: 19270695 - Nat Cell Biol. 2009 Apr;11(4):397-408 – reference: 15624019 - Nat Genet. 2005 Jan;37(1):19-24 – reference: 17613433 - Cancer Cell. 2007 Jul;12(1):9-22 – reference: 12869586 - Genes Dev. 2003 Aug 1;17(15):1829-34 – reference: 24698685 - Trends Cell Biol. 2014 Jul;24(7):400-6 – reference: 21310961 - J Biol Chem. 2011 Apr 1;286(13):10998-1002 – reference: 25567907 - Science. 2015 Jan 9;347(6218):194-8 – reference: 22505404 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Apr 1;68(Pt 4):386-92 – reference: 26028537 - Mol Cell. 2015 Jun 18;58(6):977-88 – reference: 21376236 - Cell. 2011 Mar 4;144(5):757-68 – reference: 23636326 - Nature. 2013 May 9;497(7448):217-23 – reference: 16962653 - Cell. 2006 Oct 6;127(1):125-37 |
SSID | ssj0000494507 |
Score | 2.5749576 |
Snippet | mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation... |
SourceID | pubmedcentral proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1194 |
SubjectTerms | Adaptor Proteins, Signal Transducing - chemistry Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Amino Acid Motifs Animals Binding Sites Catalysis Cell Line, Tumor Disease Models, Animal Enzyme Activation Female Heterografts Humans Mechanistic Target of Rapamycin Complex 2 Mice Models, Molecular Molecular Conformation Multiprotein Complexes - chemistry Multiprotein Complexes - metabolism Mutation Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology Phosphatidylinositol Phosphates - chemistry Phosphatidylinositol Phosphates - metabolism Phosphorylation Protein Binding Protein Interaction Domains and Motifs - genetics Proto-Oncogene Proteins c-akt - metabolism Proto-Oncogene Proteins p21(ras) - chemistry Proto-Oncogene Proteins p21(ras) - genetics TOR Serine-Threonine Kinases - chemistry TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism |
Title | PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26293922 https://www.proquest.com/docview/1730023336 https://pubmed.ncbi.nlm.nih.gov/PMC4631654 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgSIgviDflpSDxAbR5mx9J7I9VBwzGYKBO7FsVx87WiaVTSSXEX8-dnaTeKBLwoVHzkK3c_XK-O9-DkBdKwprHbU4LpQyFFcJSnVpGXcnTogRRue2Dx_c_ZruH8v1RerRsxumzSxqzWf5cmVfyP1yFa8BXzJL9B872g8IF-A_8hSNwGI5_xeODxr5DPVgJoJSEXwqG_YGgO21n22Z9WHbty7pggLPxpy8jvr43rWH98uLgm_sRq6gjxMEcd25KDO_sXe4fposQ0FsfL634t8F_-tXVpxHOsCm3l-0d93pX7vFiHnLQZiduGnscWNqm3vkFw0smUBM0xR3YWIymMVpYJBMZC22MfxfWKSYg9INtjnYoTIY7tfHjQPLzM89AnoFuokMa86Ui2d2tq-QaB3sBe3jsfVa9sw2L4IDi26ZOwrxbq2bFwtDtOKvsjcths5EeMr5FbrYGRDIMaLhNrrj6Drm-34ZI3CXDAIqXYkNupK9iMCRLMCSzKgEwJAEMSQBD0oLhHjl883o82qVtnwx6KnLV0BxU4ExXoMgxnVcW9Q1X6KpQpQEeG5DKJrNSmbw0HM7hzSXm7hiTG1tKrcR9slbPaveQJLZiVvDtgrOMy6wodAofawVSWxouc6kH5HlHlwnIIdxcKmo3W3yfMGx8wIUQ2YA8CHSanIeCKZOOqgOSX6Bg_wDWOL94p56e-FrnMhOYb_foj2M-JjeWGH1C1pr5wj0FPbExzzwGfgG0El77 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PtdIns%283%2C4%2C5%29P3-Dependent+Activation+of+the+mTORC2+Kinase+Complex&rft.jtitle=Cancer+discovery&rft.au=Liu%2C+Pengda&rft.au=Gan%2C+Wenjian&rft.au=Chin%2C+Y+Rebecca&rft.au=Ogura%2C+Kohei&rft.date=2015-11-01&rft.eissn=2159-8290&rft.volume=5&rft.issue=11&rft.spage=1194&rft_id=info:doi/10.1158%2F2159-8290.CD-15-0460&rft_id=info%3Apmid%2F26293922&rft.externalDocID=26293922 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-8290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-8290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-8290&client=summon |