PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex

mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain larg...

Full description

Saved in:
Bibliographic Details
Published inCancer discovery Vol. 5; no. 11; pp. 1194 - 1209
Main Authors Liu, Pengda, Gan, Wenjian, Chin, Y Rebecca, Ogura, Kohei, Guo, Jianping, Zhang, Jinfang, Wang, Bin, Blenis, John, Cantley, Lewis C, Toker, Alex, Su, Bing, Wei, Wenyi
Format Journal Article
LanguageEnglish
Published United States 01.11.2015
Subjects
Online AccessGet full text
ISSN2159-8290
2159-8274
2159-8290
DOI10.1158/2159-8290.CD-15-0460

Cover

Loading…
Abstract mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the pleckstrin homology (PH) domain of SIN1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5)P3, but not other PtdInsPn species, interacts with SIN1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical SIN1 residues that mediate PtdIns(3,4,5)P3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the SIN1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate AKT in a manner that is regulated temporally and spatially by PtdIns(3,4,5)P3. The SIN1-PH domain interacts with the mTOR kinase domain to suppress mTOR activity, and PtdIns(3,4,5)P3 binds the SIN1-PH domain to release its inhibition on the mTOR kinase domain, leading to mTORC2 activation. Cancer patient-derived SIN1-PH domain mutations gain oncogenicity by loss of suppressing mTOR activity as a means to facilitate tumorigenesis.
AbstractList mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the pleckstrin homology (PH) domain of SIN1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5)P3, but not other PtdInsPn species, interacts with SIN1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical SIN1 residues that mediate PtdIns(3,4,5)P3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the SIN1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate AKT in a manner that is regulated temporally and spatially by PtdIns(3,4,5)P3.UNLABELLEDmTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the pleckstrin homology (PH) domain of SIN1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5)P3, but not other PtdInsPn species, interacts with SIN1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical SIN1 residues that mediate PtdIns(3,4,5)P3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the SIN1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate AKT in a manner that is regulated temporally and spatially by PtdIns(3,4,5)P3.The SIN1-PH domain interacts with the mTOR kinase domain to suppress mTOR activity, and PtdIns(3,4,5)P3 binds the SIN1-PH domain to release its inhibition on the mTOR kinase domain, leading to mTORC2 activation. Cancer patient-derived SIN1-PH domain mutations gain oncogenicity by loss of suppressing mTOR activity as a means to facilitate tumorigenesis.SIGNIFICANCEThe SIN1-PH domain interacts with the mTOR kinase domain to suppress mTOR activity, and PtdIns(3,4,5)P3 binds the SIN1-PH domain to release its inhibition on the mTOR kinase domain, leading to mTORC2 activation. Cancer patient-derived SIN1-PH domain mutations gain oncogenicity by loss of suppressing mTOR activity as a means to facilitate tumorigenesis.
mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the pleckstrin homology (PH) domain of SIN1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5)P3, but not other PtdInsPn species, interacts with SIN1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical SIN1 residues that mediate PtdIns(3,4,5)P3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the SIN1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate AKT in a manner that is regulated temporally and spatially by PtdIns(3,4,5)P3. The SIN1-PH domain interacts with the mTOR kinase domain to suppress mTOR activity, and PtdIns(3,4,5)P3 binds the SIN1-PH domain to release its inhibition on the mTOR kinase domain, leading to mTORC2 activation. Cancer patient-derived SIN1-PH domain mutations gain oncogenicity by loss of suppressing mTOR activity as a means to facilitate tumorigenesis.
mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation by growth factors and amino acids have been extensively studied, the upstream regulatory mechanisms leading to mTORC2 activation remain largely elusive. Here, we report that the PH domain of Sin1, an essential and unique component of mTORC2, interacts with the mTOR kinase domain to suppress mTOR activity. More importantly, PtdIns(3,4,5) P 3 , but not other PtdIns P n species, interacts with Sin1-PH to release its inhibition on the mTOR kinase domain, thereby triggering mTORC2 activation. Mutating critical Sin1 residues that mediate PtdIns(3,4,5) P 3 interaction inactivates mTORC2, whereas mTORC2 activity is pathologically increased by patient-derived mutations in the Sin1-PH domain, promoting cell growth and tumor formation. Together, our study unravels a PI3K-dependent mechanism for mTORC2 activation, allowing mTORC2 to activate Akt in a manner that is regulated temporally and spatially by PtdIns(3,4,5) P 3 .
Author Blenis, John
Cantley, Lewis C
Su, Bing
Chin, Y Rebecca
Zhang, Jinfang
Wei, Wenyi
Liu, Pengda
Ogura, Kohei
Toker, Alex
Gan, Wenjian
Guo, Jianping
Wang, Bin
AuthorAffiliation 1 Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
3 Cancer Center at Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065
2 Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale Medical School, New Haven, CT 06520
AuthorAffiliation_xml – name: 1 Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
– name: 3 Cancer Center at Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065
– name: 2 Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale Medical School, New Haven, CT 06520
Author_xml – sequence: 1
  givenname: Pengda
  surname: Liu
  fullname: Liu, Pengda
  organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
– sequence: 2
  givenname: Wenjian
  surname: Gan
  fullname: Gan, Wenjian
  organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
– sequence: 3
  givenname: Y Rebecca
  surname: Chin
  fullname: Chin, Y Rebecca
  organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
– sequence: 4
  givenname: Kohei
  surname: Ogura
  fullname: Ogura, Kohei
  organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
– sequence: 5
  givenname: Jianping
  surname: Guo
  fullname: Guo, Jianping
  organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
– sequence: 6
  givenname: Jinfang
  surname: Zhang
  fullname: Zhang, Jinfang
  organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
– sequence: 7
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
– sequence: 8
  givenname: John
  surname: Blenis
  fullname: Blenis, John
  organization: Cancer Center at Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York
– sequence: 9
  givenname: Lewis C
  surname: Cantley
  fullname: Cantley, Lewis C
  organization: Cancer Center at Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York
– sequence: 10
  givenname: Alex
  surname: Toker
  fullname: Toker, Alex
  organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
– sequence: 11
  givenname: Bing
  surname: Su
  fullname: Su, Bing
  email: wwei2@bidmc.harvard.edu, bing.su@yale.edu
  organization: Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut. wwei2@bidmc.harvard.edu bing.su@yale.edu
– sequence: 12
  givenname: Wenyi
  surname: Wei
  fullname: Wei, Wenyi
  email: wwei2@bidmc.harvard.edu, bing.su@yale.edu
  organization: Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts. wwei2@bidmc.harvard.edu bing.su@yale.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26293922$$D View this record in MEDLINE/PubMed
BookMark eNpVkNlKw0AUhgdRbK19A5FcVmjqbJnlRiipS7HQIvU6zCQTm5LMxExa9O0NWEs9N2fl-3_OFTi3zhoAbhCcIBSJe4wiGQos4SSehSgKIWXwDPSP4_OTugeG3m9hF1TSCPJL0MMMSyIx7oPpqs3m1o_ImI6juxUJZ6Y2NjO2DaZpW-xVWzgbuDxoNyao1su3GAevhVXeBLGr6tJ8XYOLXJXeDA95AN6fHtfxS7hYPs_j6SLcEi7akDMEmcwRgkjyPBOUI6NkrkSqtUk1xZFmGRWapxp3fWeeckGY1lxnKZWCDMDDL7fe6cpkaWexUWVSN0Wlmu_EqSL5v7HFJvlw-4QyglhEO8DoAGjc5874NqkKn5qyVNa4nU8QJxBiQgjrTm9PtY4if38jP1mtcV0
ContentType Journal Article
Copyright 2015 American Association for Cancer Research.
Copyright_xml – notice: 2015 American Association for Cancer Research.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/2159-8290.CD-15-0460
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2159-8290
EndPage 1209
ExternalDocumentID PMC4631654
26293922
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: K99 CA181342
– fundername: NIGMS NIH HHS
  grantid: R01GM094777
– fundername: NIGMS NIH HHS
  grantid: R01 GM089763
– fundername: NIGMS NIH HHS
  grantid: R01GM041890
– fundername: NCI NIH HHS
  grantid: R01 CA177910
– fundername: NCI NIH HHS
  grantid: R01CA177910
– fundername: NCI NIH HHS
  grantid: R00 CA157945
– fundername: NCI NIH HHS
  grantid: R00CA157945
– fundername: NCI NIH HHS
  grantid: 1K99CA181342
– fundername: NIGMS NIH HHS
  grantid: R01 GM094777
GroupedDBID ---
53G
5VS
ADBBV
ADCOW
AENEX
AFHIN
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BR6
BTFSW
CGR
CUY
CVF
EBS
ECM
EIF
EJD
H13
KQ8
NPM
OK1
RCR
RHI
7X8
5PM
ID FETCH-LOGICAL-j378t-761069f110197fd8471ea9fa8cbbecb425b6d48b7cb2ecb15947836bb7bdc4983
ISSN 2159-8290
2159-8274
IngestDate Thu Aug 21 18:32:10 EDT 2025
Fri Sep 05 08:12:17 EDT 2025
Thu Apr 03 07:07:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License 2015 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j378t-761069f110197fd8471ea9fa8cbbecb425b6d48b7cb2ecb15947836bb7bdc4983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4631654
PMID 26293922
PQID 1730023336
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4631654
proquest_miscellaneous_1730023336
pubmed_primary_26293922
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer discovery
PublicationTitleAlternate Cancer Discov
PublicationYear 2015
References 15722200 - Cell Signal. 2005 Jun;17(6):761-7
9005852 - Science. 1997 Jan 31;275(5300):665-8
12150925 - Cell. 2002 Jul 26;110(2):163-75
25567906 - Science. 2015 Jan 9;347(6218):188-94
17043309 - Genes Dev. 2006 Oct 15;20(20):2820-32
24670654 - Nature. 2014 Apr 24;508(7497):541-5
16919458 - Curr Biol. 2006 Sep 19;16(18):1865-70
22053050 - Science. 2011 Nov 4;334(6056):678-83
17303383 - Cell Signal. 2007 Jun;19(6):1279-89
8702995 - J Biol Chem. 1996 Sep 6;271(36):21920-6
25561175 - Nature. 2015 Mar 26;519(7544):477-81
15851026 - Cell. 2005 Apr 22;121(2):179-93
23636326 - Nature. 2013 May 9;497(7448):217-23
22500797 - Cell. 2012 Apr 13;149(2):274-93
20832730 - Mol Cell. 2010 Sep 10;39(5):797-808
24161930 - Nat Cell Biol. 2013 Nov;15(11):1340-50
23047693 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17472-7
18497260 - Science. 2008 Jun 13;320(5882):1496-501
17613433 - Cancer Cell. 2007 Jul;12(1):9-22
25567907 - Science. 2015 Jan 9;347(6218):194-8
21157483 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35
25453101 - Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17833-8
16959574 - Cell. 2006 Sep 8;126(5):955-68
19270695 - Nat Cell Biol. 2009 Apr;11(4):397-408
12631735 - Mol Biol Cell. 2003 Mar;14(3):1204-20
22980980 - Cell. 2012 Sep 14;150(6):1196-208
15624019 - Nat Genet. 2005 Jan;37(1):19-24
21376236 - Cell. 2011 Mar 4;144(5):757-68
22504275 - Nat Cell Biol. 2012 May;14(5):542-7
26028537 - Mol Cell. 2015 Jun 18;58(6):977-88
21806543 - Biochem J. 2011 Oct 15;439(2):287-97
20535651 - Curr Top Microbiol Immunol. 2010;347:21-41
12556884 - Nature. 2003 Jan 30;421(6922):499-506
16002396 - J Biol Chem. 2005 Sep 2;280(35):30697-704
12869586 - Genes Dev. 2003 Aug 1;17(15):1829-34
18439899 - Mol Cell. 2008 Apr 25;30(2):203-13
24481632 - Protein Cell. 2014 Mar;5(3):171-7
15988011 - Mol Cell Biol. 2005 Jul;25(14):5955-64
24385483 - J Cell Biol. 2013 Nov 25;203(4):563-74
24698685 - Trends Cell Biol. 2014 Jul;24(7):400-6
21045808 - EMBO J. 2010 Dec 1;29(23):3939-51
22189424 - Nat Rev Mol Cell Biol. 2012 Jan;13(1):39-51
17233582 - Biochem Soc Symp. 2007;(74):81-93
23863151 - Biochem Soc Trans. 2013 Aug;41(4):889-95
22037461 - Biochem Biophys Res Commun. 2011 Nov 18;415(2):355-60
15268862 - Curr Biol. 2004 Jul 27;14(14):1296-302
22505404 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Apr 1;68(Pt 4):386-92
21310961 - J Biol Chem. 2011 Apr 1;286(13):10998-1002
16962653 - Cell. 2006 Oct 6;127(1):125-37
16713581 - Mol Cell. 2006 May 19;22(4):511-9
23636322 - Nature. 2013 May 9;497(7448):193-4
References_xml – reference: 18497260 - Science. 2008 Jun 13;320(5882):1496-501
– reference: 22980980 - Cell. 2012 Sep 14;150(6):1196-208
– reference: 24161930 - Nat Cell Biol. 2013 Nov;15(11):1340-50
– reference: 22500797 - Cell. 2012 Apr 13;149(2):274-93
– reference: 8702995 - J Biol Chem. 1996 Sep 6;271(36):21920-6
– reference: 25567906 - Science. 2015 Jan 9;347(6218):188-94
– reference: 24385483 - J Cell Biol. 2013 Nov 25;203(4):563-74
– reference: 22504275 - Nat Cell Biol. 2012 May;14(5):542-7
– reference: 18439899 - Mol Cell. 2008 Apr 25;30(2):203-13
– reference: 17233582 - Biochem Soc Symp. 2007;(74):81-93
– reference: 16959574 - Cell. 2006 Sep 8;126(5):955-68
– reference: 23636322 - Nature. 2013 May 9;497(7448):193-4
– reference: 17303383 - Cell Signal. 2007 Jun;19(6):1279-89
– reference: 15722200 - Cell Signal. 2005 Jun;17(6):761-7
– reference: 16002396 - J Biol Chem. 2005 Sep 2;280(35):30697-704
– reference: 12556884 - Nature. 2003 Jan 30;421(6922):499-506
– reference: 25561175 - Nature. 2015 Mar 26;519(7544):477-81
– reference: 12631735 - Mol Biol Cell. 2003 Mar;14(3):1204-20
– reference: 16713581 - Mol Cell. 2006 May 19;22(4):511-9
– reference: 17043309 - Genes Dev. 2006 Oct 15;20(20):2820-32
– reference: 25453101 - Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17833-8
– reference: 24481632 - Protein Cell. 2014 Mar;5(3):171-7
– reference: 15988011 - Mol Cell Biol. 2005 Jul;25(14):5955-64
– reference: 20535651 - Curr Top Microbiol Immunol. 2010;347:21-41
– reference: 16919458 - Curr Biol. 2006 Sep 19;16(18):1865-70
– reference: 24670654 - Nature. 2014 Apr 24;508(7497):541-5
– reference: 23863151 - Biochem Soc Trans. 2013 Aug;41(4):889-95
– reference: 15851026 - Cell. 2005 Apr 22;121(2):179-93
– reference: 23047693 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17472-7
– reference: 22189424 - Nat Rev Mol Cell Biol. 2012 Jan;13(1):39-51
– reference: 12150925 - Cell. 2002 Jul 26;110(2):163-75
– reference: 22053050 - Science. 2011 Nov 4;334(6056):678-83
– reference: 9005852 - Science. 1997 Jan 31;275(5300):665-8
– reference: 21806543 - Biochem J. 2011 Oct 15;439(2):287-97
– reference: 21157483 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35
– reference: 20832730 - Mol Cell. 2010 Sep 10;39(5):797-808
– reference: 21045808 - EMBO J. 2010 Dec 1;29(23):3939-51
– reference: 22037461 - Biochem Biophys Res Commun. 2011 Nov 18;415(2):355-60
– reference: 15268862 - Curr Biol. 2004 Jul 27;14(14):1296-302
– reference: 19270695 - Nat Cell Biol. 2009 Apr;11(4):397-408
– reference: 15624019 - Nat Genet. 2005 Jan;37(1):19-24
– reference: 17613433 - Cancer Cell. 2007 Jul;12(1):9-22
– reference: 12869586 - Genes Dev. 2003 Aug 1;17(15):1829-34
– reference: 24698685 - Trends Cell Biol. 2014 Jul;24(7):400-6
– reference: 21310961 - J Biol Chem. 2011 Apr 1;286(13):10998-1002
– reference: 25567907 - Science. 2015 Jan 9;347(6218):194-8
– reference: 22505404 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Apr 1;68(Pt 4):386-92
– reference: 26028537 - Mol Cell. 2015 Jun 18;58(6):977-88
– reference: 21376236 - Cell. 2011 Mar 4;144(5):757-68
– reference: 23636326 - Nature. 2013 May 9;497(7448):217-23
– reference: 16962653 - Cell. 2006 Oct 6;127(1):125-37
SSID ssj0000494507
Score 2.5749576
Snippet mTOR serves as a central regulator of cell growth and metabolism by forming two distinct complexes, mTORC1 and mTORC2. Although mechanisms of mTORC1 activation...
SourceID pubmedcentral
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1194
SubjectTerms Adaptor Proteins, Signal Transducing - chemistry
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Amino Acid Motifs
Animals
Binding Sites
Catalysis
Cell Line, Tumor
Disease Models, Animal
Enzyme Activation
Female
Heterografts
Humans
Mechanistic Target of Rapamycin Complex 2
Mice
Models, Molecular
Molecular Conformation
Multiprotein Complexes - chemistry
Multiprotein Complexes - metabolism
Mutation
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Phosphatidylinositol Phosphates - chemistry
Phosphatidylinositol Phosphates - metabolism
Phosphorylation
Protein Binding
Protein Interaction Domains and Motifs - genetics
Proto-Oncogene Proteins c-akt - metabolism
Proto-Oncogene Proteins p21(ras) - chemistry
Proto-Oncogene Proteins p21(ras) - genetics
TOR Serine-Threonine Kinases - chemistry
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Title PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex
URI https://www.ncbi.nlm.nih.gov/pubmed/26293922
https://www.proquest.com/docview/1730023336
https://pubmed.ncbi.nlm.nih.gov/PMC4631654
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELdgSIgviDflpSDxAbR5mx9J7I9VBwzGYKBO7FsVx87WiaVTSSXEX8-dnaTeKBLwoVHzkK3c_XK-O9-DkBdKwprHbU4LpQyFFcJSnVpGXcnTogRRue2Dx_c_ZruH8v1RerRsxumzSxqzWf5cmVfyP1yFa8BXzJL9B872g8IF-A_8hSNwGI5_xeODxr5DPVgJoJSEXwqG_YGgO21n22Z9WHbty7pggLPxpy8jvr43rWH98uLgm_sRq6gjxMEcd25KDO_sXe4fposQ0FsfL634t8F_-tXVpxHOsCm3l-0d93pX7vFiHnLQZiduGnscWNqm3vkFw0smUBM0xR3YWIymMVpYJBMZC22MfxfWKSYg9INtjnYoTIY7tfHjQPLzM89AnoFuokMa86Ui2d2tq-QaB3sBe3jsfVa9sw2L4IDi26ZOwrxbq2bFwtDtOKvsjcths5EeMr5FbrYGRDIMaLhNrrj6Drm-34ZI3CXDAIqXYkNupK9iMCRLMCSzKgEwJAEMSQBD0oLhHjl883o82qVtnwx6KnLV0BxU4ExXoMgxnVcW9Q1X6KpQpQEeG5DKJrNSmbw0HM7hzSXm7hiTG1tKrcR9slbPaveQJLZiVvDtgrOMy6wodAofawVSWxouc6kH5HlHlwnIIdxcKmo3W3yfMGx8wIUQ2YA8CHSanIeCKZOOqgOSX6Bg_wDWOL94p56e-FrnMhOYb_foj2M-JjeWGH1C1pr5wj0FPbExzzwGfgG0El77
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PtdIns%283%2C4%2C5%29P3-Dependent+Activation+of+the+mTORC2+Kinase+Complex&rft.jtitle=Cancer+discovery&rft.au=Liu%2C+Pengda&rft.au=Gan%2C+Wenjian&rft.au=Chin%2C+Y+Rebecca&rft.au=Ogura%2C+Kohei&rft.date=2015-11-01&rft.eissn=2159-8290&rft.volume=5&rft.issue=11&rft.spage=1194&rft_id=info:doi/10.1158%2F2159-8290.CD-15-0460&rft_id=info%3Apmid%2F26293922&rft.externalDocID=26293922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-8290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-8290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-8290&client=summon