Oral pharmacokinetics and bioavailability of roxithromycin in broiler chickens using HPLC
The present study was designed to investigate the oral pharmacokinetics and bioavailability of roxithromycin, a macrolide class antimicrobial drug, in broiler chickens at a single dose of 20 mg/kg body weight. Plasma concentrations of roxithromycin were measured by High Performance Liquid Chromatogr...
Saved in:
Published in | Japanese Journal of Veterinary Research Vol. 72; no. 3-4; pp. 82 - 90 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Japanese Journal of Veterinary Research Editorial Committee
12.03.2025
Faculty of Veterinary Medicine, Hokkaido University |
Subjects | |
Online Access | Get full text |
ISSN | 0047-1917 2758-447X |
DOI | 10.57494/jjvr.72.3-4_82 |
Cover
Loading…
Abstract | The present study was designed to investigate the oral pharmacokinetics and bioavailability of roxithromycin, a macrolide class antimicrobial drug, in broiler chickens at a single dose of 20 mg/kg body weight. Plasma concentrations of roxithromycin were measured by High Performance Liquid Chromatography (HPLC) method using UV (ultraviolet) detector. The pharmacokinetic (PK) parameters were calculated from plasma concentrations versus time data using ‘PK Solver 2.0’ software. Following single intravenous administration, the volume of distribution at steady state (Vss) and total body clearance (Cl) were 3.04 L/kg and 0.45 L/hr/kg, respectively. Following oral administration of roxithromycin at the dose rate of 20 mg/kg body weight in broilers, a characteristic short lag phase of 15 minutes in absorption was observed and thereafter mean maximal plasma concentration (Cmax: 3.60 μg/ml) was achieved at 2 hr. The mean values of elimination half-life (t1/2β) and mean resident time (MRT) were 8.30 and 9.57 hr, respectively. Calculated oral bioavailability (F) ranged from 51.95 to 62.57% with a mean value of 56.86%. Based on pharmacokinetic-pharmacodynamic (PK-PD) integration efficacy predictor, oral dose at 20 mg/kg body weight of roxithromycin twice a day, is predicted to be effective for treating the susceptible bacterial infections in the broiler chickens with a MIC value ≤ 1.0 μg/ml. |
---|---|
AbstractList | [Abstract] The present study was designed to investigate the oral pharmacokinetics and bioavailability of roxithromycin, a macrolide class antimicrobial drug, in broiler chickens at a single dose of 20 mg/kg body weight. Plasma concentrations of roxithromycin were measured by High Performance Liquid Chromatography (HPLC) method using UV (ultraviolet) detector. The pharmacokinetic (PK) parameters were calculated from plasma concentrations versus time data using 'PK Solver 2.0' software. Following single intravenous administration, the volume of distribution at steady state (Vss) and total body clearance (Cl) were 3.04 L/kg and 0.45 L/hr/kg, respectively. Following oral administration of roxithromycin at the dose rate of 20 mg/kg body weight in broilers, a characteristic short lag phase of 15 minutes in absorption was observed and thereafter mean maximal plasma concentration (Cmax: 3.60 μg/ml) was achieved at 2 hr. The mean values of elimination half-life (t1/2β) and mean resident time (MRT) were 8.30 and 9.57 hr, respectively. Calculated oral bioavailability (F) ranged from 51.95 to 62.57% with a mean value of 56.86%. Based on pharmacokinetic-pharmacodynamic (PK-PD) integration efficacy predictor, oral dose at 20 mg/kg body weight of roxithromycin twice a day, is predicted to be effective for treating the susceptible bacterial infections in the broiler chickens with a MIC value <- 1.0 μg/ml. The present study was designed to investigate the oral pharmacokinetics and bioavailability of roxithromycin, a macrolide class antimicrobial drug, in broiler chickens at a single dose of 20 mg/kg body weight. Plasma concentrations of roxithromycin were measured by High Performance Liquid Chromatography (HPLC) method using UV (ultraviolet) detector. The pharmacokinetic (PK) parameters were calculated from plasma concentrations versus time data using ‘PK Solver 2.0’ software. Following single intravenous administration, the volume of distribution at steady state (Vss) and total body clearance (Cl) were 3.04 L/kg and 0.45 L/hr/kg, respectively. Following oral administration of roxithromycin at the dose rate of 20 mg/kg body weight in broilers, a characteristic short lag phase of 15 minutes in absorption was observed and thereafter mean maximal plasma concentration (Cmax: 3.60 μg/ml) was achieved at 2 hr. The mean values of elimination half-life (t1/2β) and mean resident time (MRT) were 8.30 and 9.57 hr, respectively. Calculated oral bioavailability (F) ranged from 51.95 to 62.57% with a mean value of 56.86%. Based on pharmacokinetic-pharmacodynamic (PK-PD) integration efficacy predictor, oral dose at 20 mg/kg body weight of roxithromycin twice a day, is predicted to be effective for treating the susceptible bacterial infections in the broiler chickens with a MIC value ≤ 1.0 μg/ml. |
Author | Singh, Ratn Deep Patel, Hitesh B Sarvaiya, Vaidehi N Devi, Sarita Mody, Shailesh K |
Author_xml | – sequence: 1 fullname: Singh, Ratn Deep organization: Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University – sequence: 1 fullname: Patel, Hitesh B organization: Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University – sequence: 1 fullname: Sarvaiya, Vaidehi N organization: Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University – sequence: 1 fullname: Mody, Shailesh K organization: Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University – sequence: 1 fullname: Devi, Sarita organization: Department of Veterinary Medicine, College of Veterinary Science and Animal Husbandry, Kamdhenu University |
BookMark | eNo1kEFPAyEQhYmpiW317JU_sJUFdoGTMY22Jk3qQRM9EZZlW7YUGtg29t9LoyYMLxOYb_LeBIx88AaA-xLNKkYFfej7U5wxPCMFlRxfgTFmFS8oZZ8jMEaIsqIUJbsBk5T63AqO6jH4Wkfl4GGr4l7psLPeDFYnqHwLGxvUSVmnGuvscIahgzF822Ebw_6srYf5NDFYZyLUW6t3xid4TNZv4PJtNb8F151yydz96RR8vDy_z5fFar14nT-tip4wPBSs4R1hpBFt17QaUVoxxHn2I5RQpNKkxIgg0mCMWobz15bVpEa4wwZVJddkCha_3L1prVYueJddyD4co897ZZvIJRkjMcJUIsQyLwvOxS-XQLTCdY1EJj3-kvo0qI2Rh2j3Kp6lijkTl5EZIxmWRNKL5On_F53zk8aTH2SAeDM |
ContentType | Journal Article |
Copyright | 2024 Japanese Journal of Veterinary Research Editorial Committee, Faculty of Veterinary Medicine, Hokkaido University |
Copyright_xml | – notice: 2024 Japanese Journal of Veterinary Research Editorial Committee, Faculty of Veterinary Medicine, Hokkaido University |
CorporateAuthor | Department of Veterinary Medicine Kamdhenu University Department of Veterinary Pharmacology and Toxicology College of Veterinary Science and Animal Husbandry |
CorporateAuthor_xml | – name: Kamdhenu University – name: Department of Veterinary Pharmacology and Toxicology – name: College of Veterinary Science and Animal Husbandry – name: Department of Veterinary Medicine |
DOI | 10.57494/jjvr.72.3-4_82 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 2758-447X |
EndPage | 90 |
ExternalDocumentID | ds3jjvre_2024_007203_002_0082_00904526609 article_jjvr_72_3_4_72_82_article_char_en |
GroupedDBID | --- 5GY 7.U 93B ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP DIK DYU EBD ECGQY EYRJQ F5P FRP JMI JSF JSH MOJWN N.T OK1 OZF P2P RJT RZJ SV3 2WC 53G ABJNI AI. EMOBN TKC VH1 |
ID | FETCH-LOGICAL-j372t-7b8f373b9dfbdc044570884949a9a35c3120303b220d72f37d763602f2e0518c3 |
ISSN | 0047-1917 |
IngestDate | Thu Jul 10 16:15:29 EDT 2025 Wed Sep 03 06:30:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j372t-7b8f373b9dfbdc044570884949a9a35c3120303b220d72f37d763602f2e0518c3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jjvr/72/3-4/72_82/_article/-char/en |
PageCount | 9 |
ParticipantIDs | medicalonline_journals_ds3jjvre_2024_007203_002_0082_00904526609 jstage_primary_article_jjvr_72_3_4_72_82_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025-03-12 |
PublicationDateYYYYMMDD | 2025-03-12 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Japanese Journal of Veterinary Research |
PublicationTitleAlternate | JJVR |
PublicationYear | 2025 |
Publisher | Japanese Journal of Veterinary Research Editorial Committee Faculty of Veterinary Medicine, Hokkaido University |
Publisher_xml | – name: Japanese Journal of Veterinary Research Editorial Committee – name: Faculty of Veterinary Medicine, Hokkaido University |
References | 1) Abo-El-Sooud K, Fahmy E, Afifi NA, El-Aty AMA. Pharmacokinetics and bioavailability of azithromycin following intramuscular and oral administrations in broiler chickens. Research and review in biosciences 6, 264–270, 2012. 10) Goudah A, Abo El Sooud K, Abd El-Aty AM. Pharmacokinetics and tissue residue profiles of erythromycin in broiler chickens after different routes of administration. Dtsch Tierarztl Wochenschr 111, 162–165, 2004. 31) Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed 99, 306–314, 2010. doi: 10.1016/j.cmpb.2010.01.007. 2) Andes D. Pharmacokinetic and pharmacodynamic properties of antimicrobials in the therapy of respiratory tract infections. Curr Opin Infect Dis 14, 165–172, 2001. doi: 10.1097/00001432-200104000-00010. 15) Lim J-H, Park B-K, Kim M-S, Hwang Y-H, Yun H-I. Pharmacokinetics of roxithromycin after intravenous administration in broilers. Journal of veterinary clinics 23, 87–90, 2006. 6) Bryskier A, Bergogne-Berezin E. Macrolides. In: Antimicrobial Agents: Antibacterials and Antifungals. Bryskier A. ed. ASM Press, Washington D.C. pp. 475–526, 2005. doi: 10.1128/9781555815929.ch18. 23) Singh RD, Mody SK, Patel HB, Sarvaiya VN, Patel BR, Gondaliya SB. Development and validation of ultra high performance liquid chromatographic (UHPLC) method for the determination of roxithromycin in the broiler plasma. J Pharm Res Int 31, 1–8, 2019. doi: 10.9734/jpri/2019/v31i630318. 21) Patel T, Marmulak T, Gehring R, Pitesky M, Clapham MO, Tell LA. Drug residues in poultry meat: A literature review of commonly used veterinary antibacterials and anthelmintics used in poultry. J Vet Pharmacol Ther 41, 761–789, 2018. doi: 10.1111/jvp.12700. 3) Awadallah H, Awidat S, El-Mahmoudy A. Pharmacokinetics of clarithromycin after single intravenous and intracrop bolus administrations to broiler chickens. International journal of pharmacology and toxicology 4, 12–18, 2016. doi: 10.14419/ijpt.v4i1.5846. 14) Landoni MF, Albarellos G. The use of antimicrobial agents in broiler chickens. Vet J 205, 21–27, 2015. doi: 10.1016/j.tvjl.2015.04.016. 27) Turnidge JD. The pharmacodynamics of ß-lactams. Clin Infect Dis 27, 10–22, 1998. doi: 10.1086/514622. 7) Elazab ST, Abass ME. Pharmacokinetics and bioavailability of tildipirosin in goats using HPLC. Jpn J Vet Res 68, 5–12, 2020. doi: 10.14943/jjvr.68.1.1. 12) Jambhekar SS, Breen PJ. Basic Pharmacokinetics, 2nd ed. Pharmaceutical Press, London. pp. 106–126, 2012. 25) Soliman AM, Sedeik M. Pharmacokinetics and tissue residues of tylosin in broiler chickens. Pharmacol Pharm 7, 36–42, 2016. doi: 10.4236/pp.2016.71006. 26) Toutain PL, Del Castillo JRE, Bousquet-Mélou A. The pharmacokinetic–pharmacodynamic approach to a rational dosage regimen for antibiotics. Res Vet Sci 73, 105–114, 2002. doi: 10.1016/S0034-5288(02)00039-5. 11) Hannan PCT. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species. Vet Res 31, 373–395, 2000. doi: 10.1051/vetres:2000100. 17) Lim J-H, Park B-K, Yun H-I. Pharmacokinetic/pharmacodynamic modelling of roxithromycin for the inhibitory effect of tumour necrosis factor-alpha and interleukin-6 production in dogs. J Vet Med A Physiol Pathol Clin Med 53, 394–398, 2006. doi: 10.1111/j.1439-0442.2006.00852.x. 9) Gaynor M, Mankin AS. Macrolide antibiotics: Binding site, mechanism of action, resistance. Curr Top Med Chem 3, 949–961, 2003. doi: 10.2174/1568026033452159. 24) Singh RD, Patel HB, Sarvaiya VN, Raval SH, Devi S, Mody SK. Safety assessment of ciprofloxacin and roxithromycin through haematological and biochemical profiling in poultry. Toxicol Int 31, 335–342, 2024. doi: 10.18311/ti/2024/v31i2/34752. 16) Lim J-H, Park B-K, Yun H-I. Determination of roxithromycin by liquid chromatography/mass spectrometry after multiple-dose oral administration in broilers. J Vet Sci 4, 35–39, 2003. 13) Kowalski C, Roliński Z, Zań R, Wawron W. Pharmacokinetics of tylosin in broiler chickens. Pol J Vet Sci 5, 127–130, 2002. 22) Scaglione F, Rossoni G. Comparative anti-inflammatory effects of roxithromycin, azithromycin and clarithromycin. J Antimicrob Chemother 41 Suppl B, 47–50, 1998. doi: 10.1093/jac/41.suppl_2.47. 28) Watteyn A, Plessers E, Wyns H, De Baere S, De Backer P, Croubels S. Pharmacokinetics of gamithromycin after intravenous and subcutaneous administration in broiler chickens. Poult Sci 92, 1516–1522, 2013. doi: 10.3382/ps.2012-02932. 8) Gabrielsson J, Weiner D. Non-compartmental analysis. In: Computational Toxicology. Reisfeld B, Mayeno A. eds. Humana Press, Totowa, NJ. pp. 377–389, 2012. doi: 10.1007/978-1-62703-050-2_16. 4) Baggot JD. The Physiological Basis of Veterinary Clinical Pharmacology. Blackwell Science, Oxford, UK. p. 58, 2001. doi: 10.1002/9780470690567. 19) Na-Lampang K, Chongsuvivatwong V, Kitikoon V. Pattern and determinant of antibiotics used on broiler farms in Songkhla province, southern Thailand. Trop Anim Health Prod 39, 355–361, 2007. doi: 10.1007/s11250-007-9023-3. 29) Young RA, Gonzalez JP, Sorkin EM. Roxithromycin: A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs 37, 8–41, 1989. doi: 10.2165/00003495-198937010-00002. 18) Markham A, Faulds D. Roxithromycin. An update of its antimicrobial activity, pharmacokinetic properties and therapeutic use. Drugs 48, 297–326, 1994. doi: 10.2165/00003495-199448020-00011. 20) Nilsen OG. Roxithromycin: A new molecule, a new pharmacokinetic profile. Drug Investig 3 Suppl 3, 28–32, 1991. doi: 10.1007/BF03258332. 30) Zalewska-Kaszubska J, Górska D. Anti-inflammatory capabilities of macrolides. Pharmacol Res 44, 451–454, 2001. doi: 10.1006/phrs.2001.0884. 5) Bryskier A. Roxithromycin: review of its antimicrobial activity. J Antimicrob Chemother 41 Suppl B, 1–21, 1998. doi: 10.1093/jac/41.suppl_2.1. |
References_xml | – reference: 19) Na-Lampang K, Chongsuvivatwong V, Kitikoon V. Pattern and determinant of antibiotics used on broiler farms in Songkhla province, southern Thailand. Trop Anim Health Prod 39, 355–361, 2007. doi: 10.1007/s11250-007-9023-3. – reference: 13) Kowalski C, Roliński Z, Zań R, Wawron W. Pharmacokinetics of tylosin in broiler chickens. Pol J Vet Sci 5, 127–130, 2002. – reference: 12) Jambhekar SS, Breen PJ. Basic Pharmacokinetics, 2nd ed. Pharmaceutical Press, London. pp. 106–126, 2012. – reference: 14) Landoni MF, Albarellos G. The use of antimicrobial agents in broiler chickens. Vet J 205, 21–27, 2015. doi: 10.1016/j.tvjl.2015.04.016. – reference: 11) Hannan PCT. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species. Vet Res 31, 373–395, 2000. doi: 10.1051/vetres:2000100. – reference: 31) Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed 99, 306–314, 2010. doi: 10.1016/j.cmpb.2010.01.007. – reference: 10) Goudah A, Abo El Sooud K, Abd El-Aty AM. Pharmacokinetics and tissue residue profiles of erythromycin in broiler chickens after different routes of administration. Dtsch Tierarztl Wochenschr 111, 162–165, 2004. – reference: 6) Bryskier A, Bergogne-Berezin E. Macrolides. In: Antimicrobial Agents: Antibacterials and Antifungals. Bryskier A. ed. ASM Press, Washington D.C. pp. 475–526, 2005. doi: 10.1128/9781555815929.ch18. – reference: 18) Markham A, Faulds D. Roxithromycin. An update of its antimicrobial activity, pharmacokinetic properties and therapeutic use. Drugs 48, 297–326, 1994. doi: 10.2165/00003495-199448020-00011. – reference: 21) Patel T, Marmulak T, Gehring R, Pitesky M, Clapham MO, Tell LA. Drug residues in poultry meat: A literature review of commonly used veterinary antibacterials and anthelmintics used in poultry. J Vet Pharmacol Ther 41, 761–789, 2018. doi: 10.1111/jvp.12700. – reference: 8) Gabrielsson J, Weiner D. Non-compartmental analysis. In: Computational Toxicology. Reisfeld B, Mayeno A. eds. Humana Press, Totowa, NJ. pp. 377–389, 2012. doi: 10.1007/978-1-62703-050-2_16. – reference: 25) Soliman AM, Sedeik M. Pharmacokinetics and tissue residues of tylosin in broiler chickens. Pharmacol Pharm 7, 36–42, 2016. doi: 10.4236/pp.2016.71006. – reference: 5) Bryskier A. Roxithromycin: review of its antimicrobial activity. J Antimicrob Chemother 41 Suppl B, 1–21, 1998. doi: 10.1093/jac/41.suppl_2.1. – reference: 28) Watteyn A, Plessers E, Wyns H, De Baere S, De Backer P, Croubels S. Pharmacokinetics of gamithromycin after intravenous and subcutaneous administration in broiler chickens. Poult Sci 92, 1516–1522, 2013. doi: 10.3382/ps.2012-02932. – reference: 3) Awadallah H, Awidat S, El-Mahmoudy A. Pharmacokinetics of clarithromycin after single intravenous and intracrop bolus administrations to broiler chickens. International journal of pharmacology and toxicology 4, 12–18, 2016. doi: 10.14419/ijpt.v4i1.5846. – reference: 17) Lim J-H, Park B-K, Yun H-I. Pharmacokinetic/pharmacodynamic modelling of roxithromycin for the inhibitory effect of tumour necrosis factor-alpha and interleukin-6 production in dogs. J Vet Med A Physiol Pathol Clin Med 53, 394–398, 2006. doi: 10.1111/j.1439-0442.2006.00852.x. – reference: 22) Scaglione F, Rossoni G. Comparative anti-inflammatory effects of roxithromycin, azithromycin and clarithromycin. J Antimicrob Chemother 41 Suppl B, 47–50, 1998. doi: 10.1093/jac/41.suppl_2.47. – reference: 4) Baggot JD. The Physiological Basis of Veterinary Clinical Pharmacology. Blackwell Science, Oxford, UK. p. 58, 2001. doi: 10.1002/9780470690567. – reference: 16) Lim J-H, Park B-K, Yun H-I. Determination of roxithromycin by liquid chromatography/mass spectrometry after multiple-dose oral administration in broilers. J Vet Sci 4, 35–39, 2003. – reference: 23) Singh RD, Mody SK, Patel HB, Sarvaiya VN, Patel BR, Gondaliya SB. Development and validation of ultra high performance liquid chromatographic (UHPLC) method for the determination of roxithromycin in the broiler plasma. J Pharm Res Int 31, 1–8, 2019. doi: 10.9734/jpri/2019/v31i630318. – reference: 27) Turnidge JD. The pharmacodynamics of ß-lactams. Clin Infect Dis 27, 10–22, 1998. doi: 10.1086/514622. – reference: 15) Lim J-H, Park B-K, Kim M-S, Hwang Y-H, Yun H-I. Pharmacokinetics of roxithromycin after intravenous administration in broilers. Journal of veterinary clinics 23, 87–90, 2006. – reference: 2) Andes D. Pharmacokinetic and pharmacodynamic properties of antimicrobials in the therapy of respiratory tract infections. Curr Opin Infect Dis 14, 165–172, 2001. doi: 10.1097/00001432-200104000-00010. – reference: 29) Young RA, Gonzalez JP, Sorkin EM. Roxithromycin: A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs 37, 8–41, 1989. doi: 10.2165/00003495-198937010-00002. – reference: 24) Singh RD, Patel HB, Sarvaiya VN, Raval SH, Devi S, Mody SK. Safety assessment of ciprofloxacin and roxithromycin through haematological and biochemical profiling in poultry. Toxicol Int 31, 335–342, 2024. doi: 10.18311/ti/2024/v31i2/34752. – reference: 9) Gaynor M, Mankin AS. Macrolide antibiotics: Binding site, mechanism of action, resistance. Curr Top Med Chem 3, 949–961, 2003. doi: 10.2174/1568026033452159. – reference: 20) Nilsen OG. Roxithromycin: A new molecule, a new pharmacokinetic profile. Drug Investig 3 Suppl 3, 28–32, 1991. doi: 10.1007/BF03258332. – reference: 30) Zalewska-Kaszubska J, Górska D. Anti-inflammatory capabilities of macrolides. Pharmacol Res 44, 451–454, 2001. doi: 10.1006/phrs.2001.0884. – reference: 1) Abo-El-Sooud K, Fahmy E, Afifi NA, El-Aty AMA. Pharmacokinetics and bioavailability of azithromycin following intramuscular and oral administrations in broiler chickens. Research and review in biosciences 6, 264–270, 2012. – reference: 7) Elazab ST, Abass ME. Pharmacokinetics and bioavailability of tildipirosin in goats using HPLC. Jpn J Vet Res 68, 5–12, 2020. doi: 10.14943/jjvr.68.1.1. – reference: 26) Toutain PL, Del Castillo JRE, Bousquet-Mélou A. The pharmacokinetic–pharmacodynamic approach to a rational dosage regimen for antibiotics. Res Vet Sci 73, 105–114, 2002. doi: 10.1016/S0034-5288(02)00039-5. |
SSID | ssj0049806 ssib058493082 ssib023157110 |
Score | 2.3259473 |
Snippet | The present study was designed to investigate the oral pharmacokinetics and bioavailability of roxithromycin, a macrolide class antimicrobial drug, in broiler... [Abstract] The present study was designed to investigate the oral pharmacokinetics and bioavailability of roxithromycin, a macrolide class antimicrobial drug,... |
SourceID | medicalonline jstage |
SourceType | Publisher |
StartPage | 82 |
SubjectTerms | Bioavailability Broiler chickens Oral Pharmacokinetics Roxithromycin |
Title | Oral pharmacokinetics and bioavailability of roxithromycin in broiler chickens using HPLC |
URI | https://www.jstage.jst.go.jp/article/jjvr/72/3-4/72_82/_article/-char/en http://mol.medicalonline.jp/library/journal/download?GoodsID=ds3jjvre/2024/007203/002&name=0082-0090e |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Japanese Journal of Veterinary Research, 2025/03/12, Vol.72(3-4), pp.82-90 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeq8YKEEAwQGwP5gbcqJbWdOHljfEzV0AbS1ml7suzEUZuypkrTifLX8adxl6-mFQ8DpMqp3NRy7J_vzs7d7wh568ZB7FojnTDQsSP8eOgYj3uOG8GqxMhO38Xg5LNzfzQWp9feda_3q-O1tCrMIPr5x7iSf5lVqIN5xSjZv5jZtlGogO8wv1DCDEN5rzn-itH1i5p8egb2Ysu5bKaZvtPT7xULd_kWPc9-TDEpwu06mpbujSbPQCTkGM8NS3m-7K_Kc4PRtzqPcLoB0imoVExV2e_Yr1foSFNF8zbue5uXRsUcJJld9C-gxbb6YgI9sstJ_wumYGvP8kdg9ULlB0wXYFuHjyvkrpxM--d4aA2PstbdAwrmoYfWcLOdPdHIIbLe6dhZ7TlQKthsNoM2s44vSldkC-ngprIrsiXrQBOZJ0RHBlfJjGptXuUi3dUTnhShQEWR3uUDyQbcEar52xb5drzkeI9V8GBCIc26y-HCFJpOUITISO_7GEH6gMFGBZOHfLoZNxINjGdPdgwssPZC5AdqbAURBmX21_YhK_KpsnvvtjsHFlIK-wUkgnh0W73Dq7hUOubQ5RPyuMYBPa5A-ZT0Ur1P9jdDT5uhf0ZuEKZ0F6YUYEp3YEqzhG7BlMKnhiltYEpLmFKE6XMyPvl8-XHk1Bk9nJRLVjjSBAmX3IRxYuLIFcKToOWQIEmHmnsRH8L4utyAjIglg1tjiXx2LGEWlEcQ8Rdkb57N7UtCbTC0LLBaaz8RrrV6GAnXeLD_TXxoXh6QoBovtahoW1S9TBWOq5JMcSXwAvPY_IKBjiBXDsj7rRFW9ZJfqnvD4fD_m3hFHm5W0xHZK_KVfQ0GcGHelBj7DfTGsmk |
linkProvider | CAB International |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oral+pharmacokinetics+and+bioavailability+of+roxithromycin+in+broiler+chickens+using+HPLC&rft.jtitle=The+Japanese+Journal+of+Veterinary+Research&rft.au=Ratn+Deep+Singh&rft.au=Shailesh+K+Mody&rft.au=Hitesh+B+Patel&rft.au=Vaidehi+N+Sarvaiya&rft.date=2025-03-12&rft.pub=Faculty+of+Veterinary+Medicine%2C+Hokkaido+University&rft.issn=0047-1917&rft.volume=72&rft.issue=3%2F4&rft.spage=82&rft.epage=90&rft_id=info:doi/10.57494%2Fjjvr.72.3-4_82&rft.externalDocID=ds3jjvre_2024_007203_002_0082_00904526609 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-1917&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-1917&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-1917&client=summon |