Structurally Regularized Non-negative Tensor Factorization for Spatio-Temporal Pattern Discoveries

Understanding spatio-temporal activities in a city is a typical problem of spatio-temporal data analysis. For this analysis, tensor factorization methods have been widely applied for extracting a few essential patterns into latent factors. Non-negative Tensor Factorization (NTF) is popular because o...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases Vol. 10534; pp. 582 - 598
Main Authors Takeuchi, Koh, Kawahara, Yoshinobu, Iwata, Tomoharu
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2017
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN3319712489
9783319712482
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-71249-9_35

Cover

Loading…
Abstract Understanding spatio-temporal activities in a city is a typical problem of spatio-temporal data analysis. For this analysis, tensor factorization methods have been widely applied for extracting a few essential patterns into latent factors. Non-negative Tensor Factorization (NTF) is popular because of its capability of learning interpretable factors from non-negative data, simple computation procedures, and dealing with missing observation. However, since existing NTF methods are not fully aware of spatial and temporal dependencies, they often fall short of learning latent factors where a large portion of missing observation exist in data. In this paper, we present a novel NTF method for extracting smooth and flat latent factors by leveraging various kinds of spatial and temporal structures. Our method incorporates a unified structured regularizer into NTF that can represent various kinds of auxiliary information, such as an order of timestamps, a daily and weekly periodicity, distances between sensor locations, and areas of locations. For the estimation of the factors for our model, we present a simple and efficient optimization procedure based on the alternating direction method of multipliers. In missing value interpolation experiments of traffic flow data and bike-sharing system data, we demonstrate that our proposed method improved interpolation performances from existing NTF, especially when a large portion of missing values exists.
AbstractList Understanding spatio-temporal activities in a city is a typical problem of spatio-temporal data analysis. For this analysis, tensor factorization methods have been widely applied for extracting a few essential patterns into latent factors. Non-negative Tensor Factorization (NTF) is popular because of its capability of learning interpretable factors from non-negative data, simple computation procedures, and dealing with missing observation. However, since existing NTF methods are not fully aware of spatial and temporal dependencies, they often fall short of learning latent factors where a large portion of missing observation exist in data. In this paper, we present a novel NTF method for extracting smooth and flat latent factors by leveraging various kinds of spatial and temporal structures. Our method incorporates a unified structured regularizer into NTF that can represent various kinds of auxiliary information, such as an order of timestamps, a daily and weekly periodicity, distances between sensor locations, and areas of locations. For the estimation of the factors for our model, we present a simple and efficient optimization procedure based on the alternating direction method of multipliers. In missing value interpolation experiments of traffic flow data and bike-sharing system data, we demonstrate that our proposed method improved interpolation performances from existing NTF, especially when a large portion of missing values exists.
Author Kawahara, Yoshinobu
Iwata, Tomoharu
Takeuchi, Koh
Author_xml – sequence: 1
  givenname: Koh
  surname: Takeuchi
  fullname: Takeuchi, Koh
  email: takeuchi.koh@lab.ntt.co.jp
– sequence: 2
  givenname: Yoshinobu
  surname: Kawahara
  fullname: Kawahara, Yoshinobu
– sequence: 3
  givenname: Tomoharu
  surname: Iwata
  fullname: Iwata, Tomoharu
BookMark eNqNkN1uFDEMRgMUxG7ZN-BiXiDgTP4vUaGAVBXUbq-jzIyzTFmSIclWgqcn2wLXlSzZOtZnyWdNTmKKSMhrBm8YgH5rtaGccmapZr2w1Doun5BNw7zBe2afkhVTjFHOhX1G1v8Wxp6QFXDoqdWCvyBrBswI3TNlXpJNKbcAwCwHpmFFhuuaD2M9ZL_f_-qucHfY-zz_xqm7TJFG3Pk632G3xVhS7s79WFNbN5hiFxq5Xo4z3eKPJbUb3VdfK-bYvZ_LmO4wz1hekefB7wtu_vZTcnP-YXv2iV58-fj57N0FveVSVGqCMVYJP44DDh69sEYp008saBt4aKXCpAQAhklYqSfDmQzGDpOE0ffIT0n_cLcseY47zG5I6XtxDNxRqWvuHHdNkrvX545KW0g8hJacfh6wVIfH1IixtnfGb35p7xSnOPAelJNGtpk9Nial1gDmf-wPXeeLcw
ContentType Book Chapter
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID FFUUA
DEWEY 006.31
DOI 10.1007/978-3-319-71249-9_35
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319712499
3319712497
EISSN 1611-3349
Editor Vens, Celine
Hollmén, Jaakko
Dzeroski, Saso
Todorovski, Ljupčo
Ceci, Michelangelo
Editor_xml – sequence: 1
  fullname: Todorovski, Ljupčo
– sequence: 2
  fullname: Ceci, Michelangelo
– sequence: 3
  fullname: Vens, Celine
– sequence: 4
  fullname: Hollmén, Jaakko
– sequence: 5
  fullname: Dzeroski, Saso
EndPage 598
ExternalDocumentID EBC6303206_585_631
EBC5577008_585_631
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABBVZ
ABHTH
ABQUB
ACDJR
AEDXK
AEJLV
AEKFX
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CVWCR
CZZ
FFUUA
I4C
IEZ
SBO
SWYDZ
TPJZQ
TSXQS
Z5O
Z7R
Z7U
Z7W
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-j354t-8f88964accbebaea4986682d1f79f3ff3f6fd6400efd4957d8315f89bd50ca2e3
ISBN 3319712489
9783319712482
ISSN 0302-9743
IngestDate Tue Jul 29 20:20:35 EDT 2025
Wed May 28 23:51:48 EDT 2025
Wed May 28 23:38:32 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.D343Q334-342T
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j354t-8f88964accbebaea4986682d1f79f3ff3f6fd6400efd4957d8315f89bd50ca2e3
OCLC 1018472168
PQID EBC5577008_585_631
PageCount 17
ParticipantIDs springer_books_10_1007_978_3_319_71249_9_35
proquest_ebookcentralchapters_6303206_585_631
proquest_ebookcentralchapters_5577008_585_631
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part I
PublicationTitle Machine Learning and Knowledge Discovery in Databases
PublicationYear 2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001930170
ssj0002792
Score 2.1411507
Snippet Understanding spatio-temporal activities in a city is a typical problem of spatio-temporal data analysis. For this analysis, tensor factorization methods have...
SourceID springer
proquest
SourceType Publisher
StartPage 582
Title Structurally Regularized Non-negative Tensor Factorization for Spatio-Temporal Pattern Discoveries
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5577008&ppg=631
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6303206&ppg=631
http://link.springer.com/10.1007/978-3-319-71249-9_35
Volume 10534
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLa27oJ22BhDYwzkAzfkieDYsY-MFRAwLhTEzYpjG4GqVKI98dfzXmLTJKqEmFRFVeSmVj7_eO_5fd8jZC9zkucWBq8LhWe5wEPC3FomgrAZuM2y4MhG_nclz27y8ztxl-rdR3bJwv6unlfySv4HVbgHuCJL9h3Ivj4UbsB3wBeugDBcB8ZvP8waKwxhGqRPCqkt1fAihchQVrPC9MyG1_e3XJS4X827I-S6kY5F2Y0pGuJYk_7p4RkM0KtZzWp_30qCT8DPnT3tnzR1eSJps8lNvG5ysdmk1baaotg_Bhdf_zhlJ8aQQlYMQgoppDgISnbiYkenPTeUwzwuwFBQ_XUV5ne-cpXuJmYgiQp_q5k2rXBJXxRbxk2iL4o9_nMsOdZ-lwb8HSORSf-xUGJEPh2Nzy9vl2E2zVEhCFk9qZO61V1adrrDqFzVp57vMTgub6yQyVfyGZkpFCkj0Mt18sHX38iXVJeDxmV6g9gusrSDLO0iS1tkaQ9ZCsjSAbI0Iks7yH4nNyfjyfEZi7U02CMX-YKpoJSWeVlV1tvSl7lWUqpDl4VCBx7gI4OTsKD74MBnLpzimQhKWycOqvLQ800yqme1_0FoqUuw4qGd5eCN2wPlHbcAhYPNrwIHYouw9L5Mc-If04yr9u3MjYAVAYufRuTebD9AeovsJxAMNp-bJL0N6BluAD3ToGcQvZ_vfPo2WVtOiV9kBID5HbA7F3Y3jq0XNi6EZQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.atitle=Structurally+Regularized+Non-negative+Tensor+Factorization+for+Spatio-Temporal+Pattern+Discoveries&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319712482&rft.volume=10534&rft_id=info:doi/10.1007%2F978-3-319-71249-9_35&rft.externalDBID=631&rft.externalDocID=EBC6303206_585_631
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5577008-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6303206-l.jpg