Deep Learning for Detecting Cyberbullying Across Multiple Social Media Platforms

Harassment by cyberbullies is a significant phenomenon on the social media. Existing works for cyberbullying detection have at least one of the following three bottlenecks. First, they target only one particular social media platform (SMP). Second, they address just one topic of cyberbullying. Third...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Information Retrieval Vol. 10772; pp. 141 - 153
Main Authors Agrawal, Sweta, Awekar, Amit
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Harassment by cyberbullies is a significant phenomenon on the social media. Existing works for cyberbullying detection have at least one of the following three bottlenecks. First, they target only one particular social media platform (SMP). Second, they address just one topic of cyberbullying. Third, they rely on carefully handcrafted features of the data. We show that deep learning based models can overcome all three bottlenecks. Knowledge learned by these models on one dataset can be transferred to other datasets. We performed extensive experiments using three real-world datasets: Formspring (∼ $$\sim $$ 12k posts), Twitter (∼ $$\sim $$ 16k posts), and Wikipedia(∼ $$\sim $$ 100k posts). Our experiments provide several useful insights about cyberbullying detection. To the best of our knowledge, this is the first work that systematically analyzes cyberbullying detection on various topics across multiple SMPs using deep learning based models and transfer learning.
Bibliography:Original Abstract: Harassment by cyberbullies is a significant phenomenon on the social media. Existing works for cyberbullying detection have at least one of the following three bottlenecks. First, they target only one particular social media platform (SMP). Second, they address just one topic of cyberbullying. Third, they rely on carefully handcrafted features of the data. We show that deep learning based models can overcome all three bottlenecks. Knowledge learned by these models on one dataset can be transferred to other datasets. We performed extensive experiments using three real-world datasets: Formspring (∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}12k posts), Twitter (∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}16k posts), and Wikipedia(∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}100k posts). Our experiments provide several useful insights about cyberbullying detection. To the best of our knowledge, this is the first work that systematically analyzes cyberbullying detection on various topics across multiple SMPs using deep learning based models and transfer learning.
ISBN:9783319769400
3319769405
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-76941-7_11