Learning Prime Implicant Conditions from Interpretation Transition

In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations (I, J) such that $$J=T_P(I)$$ , where $$T_P$$ is the immediate consequence operator, we infer the program P. Here we propose a new learning appro...

Full description

Saved in:
Bibliographic Details
Published inInductive Logic Programming Vol. 9046; pp. 108 - 125
Main Authors Ribeiro, Tony, Inoue, Katsumi
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2015
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations (I, J) such that $$J=T_P(I)$$ , where $$T_P$$ is the immediate consequence operator, we infer the program P. Here we propose a new learning approach that is more efficient in terms of output quality. This new approach relies on specialization in place of generalization. It generates hypotheses by specialization from the most general clauses until no negative transition is covered. Contrary to previous approaches, the output of this method does not depend on variables/transitions ordering. The new method guarantees that the learned rules are minimal, that is, the body of each rule constitutes a prime implicant to infer the head.
AbstractList In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations (I, J) such that $$J=T_P(I)$$ , where $$T_P$$ is the immediate consequence operator, we infer the program P. Here we propose a new learning approach that is more efficient in terms of output quality. This new approach relies on specialization in place of generalization. It generates hypotheses by specialization from the most general clauses until no negative transition is covered. Contrary to previous approaches, the output of this method does not depend on variables/transitions ordering. The new method guarantees that the learned rules are minimal, that is, the body of each rule constitutes a prime implicant to infer the head.
Author Ribeiro, Tony
Inoue, Katsumi
Author_xml – sequence: 1
  givenname: Tony
  surname: Ribeiro
  fullname: Ribeiro, Tony
  email: tony_ribeiro@nii.ac.jp
  organization: The Graduate University for Advanced Studies (Sokendai), Chiyoda-ku, Tokyo, Japan
– sequence: 2
  givenname: Katsumi
  surname: Inoue
  fullname: Inoue, Katsumi
  email: inoue@nii.ac.jp
  organization: National Institute of Informatics, Chiyoda-ku, Tokyo, Japan
BookMark eNqNkMtOAyEUhlGrsdY-gZt5AZTDdVhq46VJE13UNaHA6NSWGWF8f2lrTNx5NiT_n-_k8F2gUexiQOgKyDUQom60qjHDDDSmTJEac1MfoWlJWcn2ET9GY5AAmDGuT_50So3QmDBCsVacnaGxZkyWoqbnaJrzmhACQmvByRjdLYJNsY1v1Utqt6Gab_tN62wcqlkXfTu0XcxVk7ptNY9DSH0Kg92F1TLZmPf9JTpt7CaH6c87Qa8P98vZE148P85ntwu8ZoINWAvipHU8CFqvOA3egVDSWckcVR7A17QR1NsyHmgg3jeNbIjgoVlp13g2QXDYm_tUDg7JrLruIxsgZufMFAOGmeLA7AWZ4qww_MD0qfv8CnkwYQe5EIdkN-7d9uVT2UiqpRCy7AEDoP-LCaElEfQX-wbZgX-R
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2015
Copyright_xml – notice: Springer International Publishing Switzerland 2015
DBID FFUUA
DEWEY 005.115
DOI 10.1007/978-3-319-23708-4_8
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9783319237084
331923708X
EISSN 1611-3349
Editor Davis, Jesse
Ramon, Jan
Editor_xml – sequence: 1
  fullname: Davis, Jesse
– sequence: 2
  fullname: Ramon, Jan
EndPage 125
ExternalDocumentID EBC6296556_101_119
EBC5596052_101_119
GroupedDBID 0D6
0DA
38.
AABBV
AAGZE
AAZAK
AAZUS
ABBVZ
ABFTD
ABMNI
ACKNT
ACRRC
AEDXK
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
APFYR
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
IY-
LDH
SBO
SFQCF
TMQGW
TPJZQ
TSXQS
TWXRB
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
P2P
RSU
~02
ID FETCH-LOGICAL-j353t-950c6ac4e528b42edc1576ca63c27d11d82f52daaaad12e0ddff6f054efb9cfd3
ISBN 9783319237077
3319237071
ISSN 0302-9743
IngestDate Tue Jul 29 20:03:17 EDT 2025
Mon Apr 07 01:55:03 EDT 2025
Thu May 29 00:28:37 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA8.9-QA10.3Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j353t-950c6ac4e528b42edc1576ca63c27d11d82f52daaaad12e0ddff6f054efb9cfd3
Notes Original Abstract: In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations (I, J) such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J=T_P(I)$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_P$$\end{document} is the immediate consequence operator, we infer the program P. Here we propose a new learning approach that is more efficient in terms of output quality. This new approach relies on specialization in place of generalization. It generates hypotheses by specialization from the most general clauses until no negative transition is covered. Contrary to previous approaches, the output of this method does not depend on variables/transitions ordering. The new method guarantees that the learned rules are minimal, that is, the body of each rule constitutes a prime implicant to infer the head.
OCLC 933623782
PQID EBC5596052_101_119
PageCount 18
ParticipantIDs springer_books_10_1007_978_3_319_23708_4_8
proquest_ebookcentralchapters_6296556_101_119
proquest_ebookcentralchapters_5596052_101_119
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 24th International Conference, ILP 2014, Nancy, France, September 14-16, 2014, Revised Selected Papers
PublicationTitle Inductive Logic Programming
PublicationYear 2015
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Madras, Indian Institute of Technology, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0001599540
ssj0002792
Score 2.0827672
Snippet In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations...
SourceID springer
proquest
SourceType Publisher
StartPage 108
SubjectTerms Artificial intelligence
Attractors
Boolean networks
Computer programming / software development
Dynamical systems
Inductive logic programming
Learning from interpretation
Mathematical theory of computation
Supported models
Title Learning Prime Implicant Conditions from Interpretation Transition
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5596052&ppg=119
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6296556&ppg=119
http://link.springer.com/10.1007/978-3-319-23708-4_8
Volume 9046
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXocoEegEJFC1Q-cEIyiu3YTo5ttW1VtYhDi3qzNv6QitRFYsOFX89MYidNqITKHqJVlESWnzWeGc97Q8hH3oQ6OC6ZiJVjZVNLVq10w3QZC5QHr3jsqny_6LPr8vxG3Yz9NDt2Sdt8dr8f5JX8D6pwD3BFluwjkB0-CjfgP-ALV0AYrjPnd5pmTeWCKNWKhT_YL9lhyT9WWt3lvSitg4uc-_iKQv6dGjBavha5fr6v1-o5JrPyw24Tux1gS4kBrmaJgZwYnKUW72W3Dk8nwaSU6O2ZIrVVSdaxLvoU4V-m9n51BTKh8NWKlbYad5Z8ms6TVZwKWy-PjrWotVIa68wgFKm3yJap1II8PVyeX3wbU2UoilYWyMzJQ-S9dtI45EFQqtcMng1pEj7MTrw7R-LqJdlGcglF1gcM8hV5EtY75EVurUGTpd0hzy8HOd3Na3KUQaQdiHQAkY4gUgSRTkGkI4hvyPXJ8ur4jKXmF-y7VLJltSqcXrkyKFE1pQjecQgN3UpLJ4zn3FciKuFX8PNchML7GHUEBzzEpnbRy12yWP9Yh7eEQlBbGOeKqCGWV0bWQSBzKxoXjOLG7BGWZ8d2R_SpLtj1c7GxEHVC1CsyTP98fgbrHvmUp9zi4xubtbIBKistQGU7qCxAtf_Ij78jz8bF_54s2p-_wgfwE9vmIK2jP25EZZo
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Inductive+Logic+Programming&rft.atitle=Learning+Prime+Implicant+Conditions+from+Interpretation+Transition&rft.date=2015-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319237077&rft.volume=9046&rft_id=info:doi/10.1007%2F978-3-319-23708-4_8&rft.externalDBID=119&rft.externalDocID=EBC6296556_101_119
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5596052-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6296556-l.jpg