Learning Prime Implicant Conditions from Interpretation Transition
In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations (I, J) such that $$J=T_P(I)$$ , where $$T_P$$ is the immediate consequence operator, we infer the program P. Here we propose a new learning appro...
Saved in:
Published in | Inductive Logic Programming Vol. 9046; pp. 108 - 125 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2015
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations (I, J) such that $$J=T_P(I)$$ , where $$T_P$$ is the immediate consequence operator, we infer the program P. Here we propose a new learning approach that is more efficient in terms of output quality. This new approach relies on specialization in place of generalization. It generates hypotheses by specialization from the most general clauses until no negative transition is covered. Contrary to previous approaches, the output of this method does not depend on variables/transitions ordering. The new method guarantees that the learned rules are minimal, that is, the body of each rule constitutes a prime implicant to infer the head. |
---|---|
AbstractList | In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations (I, J) such that $$J=T_P(I)$$ , where $$T_P$$ is the immediate consequence operator, we infer the program P. Here we propose a new learning approach that is more efficient in terms of output quality. This new approach relies on specialization in place of generalization. It generates hypotheses by specialization from the most general clauses until no negative transition is covered. Contrary to previous approaches, the output of this method does not depend on variables/transitions ordering. The new method guarantees that the learned rules are minimal, that is, the body of each rule constitutes a prime implicant to infer the head. |
Author | Ribeiro, Tony Inoue, Katsumi |
Author_xml | – sequence: 1 givenname: Tony surname: Ribeiro fullname: Ribeiro, Tony email: tony_ribeiro@nii.ac.jp organization: The Graduate University for Advanced Studies (Sokendai), Chiyoda-ku, Tokyo, Japan – sequence: 2 givenname: Katsumi surname: Inoue fullname: Inoue, Katsumi email: inoue@nii.ac.jp organization: National Institute of Informatics, Chiyoda-ku, Tokyo, Japan |
BookMark | eNqNkMtOAyEUhlGrsdY-gZt5AZTDdVhq46VJE13UNaHA6NSWGWF8f2lrTNx5NiT_n-_k8F2gUexiQOgKyDUQom60qjHDDDSmTJEac1MfoWlJWcn2ET9GY5AAmDGuT_50So3QmDBCsVacnaGxZkyWoqbnaJrzmhACQmvByRjdLYJNsY1v1Utqt6Gab_tN62wcqlkXfTu0XcxVk7ptNY9DSH0Kg92F1TLZmPf9JTpt7CaH6c87Qa8P98vZE148P85ntwu8ZoINWAvipHU8CFqvOA3egVDSWckcVR7A17QR1NsyHmgg3jeNbIjgoVlp13g2QXDYm_tUDg7JrLruIxsgZufMFAOGmeLA7AWZ4qww_MD0qfv8CnkwYQe5EIdkN-7d9uVT2UiqpRCy7AEDoP-LCaElEfQX-wbZgX-R |
ContentType | Book Chapter |
Copyright | Springer International Publishing Switzerland 2015 |
Copyright_xml | – notice: Springer International Publishing Switzerland 2015 |
DBID | FFUUA |
DEWEY | 005.115 |
DOI | 10.1007/978-3-319-23708-4_8 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISBN | 9783319237084 331923708X |
EISSN | 1611-3349 |
Editor | Davis, Jesse Ramon, Jan |
Editor_xml | – sequence: 1 fullname: Davis, Jesse – sequence: 2 fullname: Ramon, Jan |
EndPage | 125 |
ExternalDocumentID | EBC6296556_101_119 EBC5596052_101_119 |
GroupedDBID | 0D6 0DA 38. AABBV AAGZE AAZAK AAZUS ABBVZ ABFTD ABMNI ACKNT ACRRC AEDXK AEJLV AEKFX AETDV AEZAY ALMA_UNASSIGNED_HOLDINGS APFYR AZZ BBABE CZZ FFUUA I4C IEZ IY- LDH SBO SFQCF TMQGW TPJZQ TSXQS TWXRB Z83 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS P2P RSU ~02 |
ID | FETCH-LOGICAL-j353t-950c6ac4e528b42edc1576ca63c27d11d82f52daaaad12e0ddff6f054efb9cfd3 |
ISBN | 9783319237077 3319237071 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:03:17 EDT 2025 Mon Apr 07 01:55:03 EDT 2025 Thu May 29 00:28:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | QA8.9-QA10.3Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j353t-950c6ac4e528b42edc1576ca63c27d11d82f52daaaad12e0ddff6f054efb9cfd3 |
Notes | Original Abstract: In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations (I, J) such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J=T_P(I)$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_P$$\end{document} is the immediate consequence operator, we infer the program P. Here we propose a new learning approach that is more efficient in terms of output quality. This new approach relies on specialization in place of generalization. It generates hypotheses by specialization from the most general clauses until no negative transition is covered. Contrary to previous approaches, the output of this method does not depend on variables/transitions ordering. The new method guarantees that the learned rules are minimal, that is, the body of each rule constitutes a prime implicant to infer the head. |
OCLC | 933623782 |
PQID | EBC5596052_101_119 |
PageCount | 18 |
ParticipantIDs | springer_books_10_1007_978_3_319_23708_4_8 proquest_ebookcentralchapters_6296556_101_119 proquest_ebookcentralchapters_5596052_101_119 |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 24th International Conference, ILP 2014, Nancy, France, September 14-16, 2014, Revised Selected Papers |
PublicationTitle | Inductive Logic Programming |
PublicationYear | 2015 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, United Kingdom – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, United Kingdom – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: CNB H 104.2, ETH Zurich, Zürich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Madras, Indian Institute of Technology, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max Planck Institute for Informatics, Saarbrücken, Germany |
SSID | ssj0001599540 ssj0002792 |
Score | 2.0827672 |
Snippet | In a previous work we proposed a framework for learning normal logic programs from transitions of interpretations. Given a set of pairs of interpretations... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 108 |
SubjectTerms | Artificial intelligence Attractors Boolean networks Computer programming / software development Dynamical systems Inductive logic programming Learning from interpretation Mathematical theory of computation Supported models |
Title | Learning Prime Implicant Conditions from Interpretation Transition |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5596052&ppg=119 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6296556&ppg=119 http://link.springer.com/10.1007/978-3-319-23708-4_8 |
Volume | 9046 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXocoEegEJFC1Q-cEIyiu3YTo5ttW1VtYhDi3qzNv6QitRFYsOFX89MYidNqITKHqJVlESWnzWeGc97Q8hH3oQ6OC6ZiJVjZVNLVq10w3QZC5QHr3jsqny_6LPr8vxG3Yz9NDt2Sdt8dr8f5JX8D6pwD3BFluwjkB0-CjfgP-ALV0AYrjPnd5pmTeWCKNWKhT_YL9lhyT9WWt3lvSitg4uc-_iKQv6dGjBavha5fr6v1-o5JrPyw24Tux1gS4kBrmaJgZwYnKUW72W3Dk8nwaSU6O2ZIrVVSdaxLvoU4V-m9n51BTKh8NWKlbYad5Z8ms6TVZwKWy-PjrWotVIa68wgFKm3yJap1II8PVyeX3wbU2UoilYWyMzJQ-S9dtI45EFQqtcMng1pEj7MTrw7R-LqJdlGcglF1gcM8hV5EtY75EVurUGTpd0hzy8HOd3Na3KUQaQdiHQAkY4gUgSRTkGkI4hvyPXJ8ur4jKXmF-y7VLJltSqcXrkyKFE1pQjecQgN3UpLJ4zn3FciKuFX8PNchML7GHUEBzzEpnbRy12yWP9Yh7eEQlBbGOeKqCGWV0bWQSBzKxoXjOLG7BGWZ8d2R_SpLtj1c7GxEHVC1CsyTP98fgbrHvmUp9zi4xubtbIBKistQGU7qCxAtf_Ij78jz8bF_54s2p-_wgfwE9vmIK2jP25EZZo |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Inductive+Logic+Programming&rft.atitle=Learning+Prime+Implicant+Conditions+from+Interpretation+Transition&rft.date=2015-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319237077&rft.volume=9046&rft_id=info:doi/10.1007%2F978-3-319-23708-4_8&rft.externalDBID=119&rft.externalDocID=EBC6296556_101_119 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5596052-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6296556-l.jpg |