Vertical 1T‐TaS2 Synthesis on Nanoporous Gold for High‐Performance Electrocatalytic Applications
2D metallic TaS2 is acting as an ideal platform for exploring fundamental physical issues (superconductivity, charge‐density wave, etc.) and for engineering novel applications in energy‐related fields. The batch synthesis of high‐quality TaS2 nanosheets with a specific phase is crucial for such issu...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 15; pp. e1705916 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
12.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2D metallic TaS2 is acting as an ideal platform for exploring fundamental physical issues (superconductivity, charge‐density wave, etc.) and for engineering novel applications in energy‐related fields. The batch synthesis of high‐quality TaS2 nanosheets with a specific phase is crucial for such issues. Herein, the successful synthesis of novel vertically oriented 1T‐TaS2 nanosheets on nanoporous gold substrates is reported, via a facile chemical vapor deposition route. By virtue of the abundant edge sites and excellent electrical transport property, such vertical 1T‐TaS2 is employed as high‐efficiency electrocatalysts in the hydrogen evolution reaction, featured with rather low Tafel slopes ≈67–82 mV dec−1 and an ultrahigh exchange current density ≈67.61 µA cm−2. The influence of phase states of 1T‐ and 2H‐TaS2 on the catalytic activity is also discussed with the combination of density functional theory calculations. This work hereby provides fundamental insights into the controllable syntheses and electrocatalytic applications of vertical 1T‐TaS2 nanosheets achieved through the substrate engineering.
Vertically oriented 1T‐TaS2 nanosheets are first synthesized on nanoporous gold (NPG) substrates, via the chemical vapor deposition route. By virtue of the abundant edge sites and excellent electrical transport property, such vertical 1T‐TaS2/NPG are employed as high‐efficiency electrocatalysts in the hydrogen evolution reaction. The influence of the phase states of TaS2 on the catalytic activity is also explored according to theoretical calculations. |
---|---|
AbstractList | 2D metallic TaS2 is acting as an ideal platform for exploring fundamental physical issues (superconductivity, charge‐density wave, etc.) and for engineering novel applications in energy‐related fields. The batch synthesis of high‐quality TaS2 nanosheets with a specific phase is crucial for such issues. Herein, the successful synthesis of novel vertically oriented 1T‐TaS2 nanosheets on nanoporous gold substrates is reported, via a facile chemical vapor deposition route. By virtue of the abundant edge sites and excellent electrical transport property, such vertical 1T‐TaS2 is employed as high‐efficiency electrocatalysts in the hydrogen evolution reaction, featured with rather low Tafel slopes ≈67–82 mV dec−1 and an ultrahigh exchange current density ≈67.61 µA cm−2. The influence of phase states of 1T‐ and 2H‐TaS2 on the catalytic activity is also discussed with the combination of density functional theory calculations. This work hereby provides fundamental insights into the controllable syntheses and electrocatalytic applications of vertical 1T‐TaS2 nanosheets achieved through the substrate engineering. 2D metallic TaS2 is acting as an ideal platform for exploring fundamental physical issues (superconductivity, charge‐density wave, etc.) and for engineering novel applications in energy‐related fields. The batch synthesis of high‐quality TaS2 nanosheets with a specific phase is crucial for such issues. Herein, the successful synthesis of novel vertically oriented 1T‐TaS2 nanosheets on nanoporous gold substrates is reported, via a facile chemical vapor deposition route. By virtue of the abundant edge sites and excellent electrical transport property, such vertical 1T‐TaS2 is employed as high‐efficiency electrocatalysts in the hydrogen evolution reaction, featured with rather low Tafel slopes ≈67–82 mV dec−1 and an ultrahigh exchange current density ≈67.61 µA cm−2. The influence of phase states of 1T‐ and 2H‐TaS2 on the catalytic activity is also discussed with the combination of density functional theory calculations. This work hereby provides fundamental insights into the controllable syntheses and electrocatalytic applications of vertical 1T‐TaS2 nanosheets achieved through the substrate engineering. Vertically oriented 1T‐TaS2 nanosheets are first synthesized on nanoporous gold (NPG) substrates, via the chemical vapor deposition route. By virtue of the abundant edge sites and excellent electrical transport property, such vertical 1T‐TaS2/NPG are employed as high‐efficiency electrocatalysts in the hydrogen evolution reaction. The influence of the phase states of TaS2 on the catalytic activity is also explored according to theoretical calculations. |
Author | Jiang, Shaolong Yan, Xiaoqin Li, He Shi, Jianping Xu, Runzhang Huan, Yahuan Zhang, Zhepeng Lang, Xingyou Zhou, Xiebo Hong, Min Gu, Lin Zhang, Yanfeng Li, Minghua Zou, Xiaolong Gong, Yue Zhang, Qing Zhao, Liyun Xie, Chunyu |
Author_xml | – sequence: 1 givenname: Yahuan surname: Huan fullname: Huan, Yahuan organization: Peking University – sequence: 2 givenname: Jianping surname: Shi fullname: Shi, Jianping organization: Peking University – sequence: 3 givenname: Xiaolong surname: Zou fullname: Zou, Xiaolong organization: Tsinghua University – sequence: 4 givenname: Yue surname: Gong fullname: Gong, Yue organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Zhepeng surname: Zhang fullname: Zhang, Zhepeng organization: Peking University – sequence: 6 givenname: Minghua surname: Li fullname: Li, Minghua organization: University of Science and Technology Beijing – sequence: 7 givenname: Liyun surname: Zhao fullname: Zhao, Liyun organization: Peking University – sequence: 8 givenname: Runzhang surname: Xu fullname: Xu, Runzhang organization: Tsinghua University – sequence: 9 givenname: Shaolong surname: Jiang fullname: Jiang, Shaolong organization: Peking University – sequence: 10 givenname: Xiebo surname: Zhou fullname: Zhou, Xiebo organization: Peking University – sequence: 11 givenname: Min surname: Hong fullname: Hong, Min organization: Peking University – sequence: 12 givenname: Chunyu surname: Xie fullname: Xie, Chunyu organization: Peking University – sequence: 13 givenname: He surname: Li fullname: Li, He organization: Peking University – sequence: 14 givenname: Xingyou surname: Lang fullname: Lang, Xingyou organization: Jilin University – sequence: 15 givenname: Qing surname: Zhang fullname: Zhang, Qing organization: Peking University – sequence: 16 givenname: Lin surname: Gu fullname: Gu, Lin email: l.gu@iphy.ac.cn organization: Collaborative Innovation Center of Quantum Matter – sequence: 17 givenname: Xiaoqin surname: Yan fullname: Yan, Xiaoqin email: xqyan@mater.ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 18 givenname: Yanfeng orcidid: 0000-0003-1319-3270 surname: Zhang fullname: Zhang, Yanfeng email: yanfengzhang@pku.edu.cn organization: Peking University |
BookMark | eNpdkE1LAzEQhoMoWD-ungNevGydJJt0cyx-tIJf0Op1yWazdkuarMkW6c2f4G_0l5hS8eBpZuDhnZnnCO077wxCZwSGBIBeqnqlhhTICLgkYg8NCKcky0HyfTQAyXgmRV4coqMYlwAgBYgBql9N6FutLCbz78-vuZpRPNu4fmFiG7F3-FE53_ng1xFPvK1x4wOetm-LBD-bkKaVctrgG2t0H7xWvbKbFIjHXWdTbt96F0_QQaNsNKe_9Ri93N7Mr6bZ_dPk7mp8ny0ZoyLTnBS60mZkRF4xrhpaUZk3UouiIDzX244TXdQ0b-qiMqICqEaFZBpyCcDYMbrY5XbBv69N7MtVG7WxVjmTHiiTHCII45In9PwfuvTr4NJ1iaJ5WiikTJTcUR-tNZuyC-1KhU1JoNwaL7fGyz_j5fj6Yfw3sR-aDnqn |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201705916 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201705916 |
Genre | article |
GrantInformation_xml | – fundername: Youth 1000‐Talent Program of China – fundername: National Natural Science Foundation of China funderid: 51290272; 51372023; 51472008; 51772024; 61774003 – fundername: National Key Research and Development Program of China funderid: 2016YFA0200103; 2017YFA0304600; 2017YFA0205700 – fundername: Development and Reform Commission of Shenzhen Municipality under the “Low‐Dimensional Materials and Devices Discipline,” – fundername: Open Research Fund Program of the State Key Laboratory of Low‐Dimensional Quantum Physics funderid: KF201601 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-j3326-c518cbce7e64b35af2b294f9c688154cf9c651c8d24fd8be6b00b7893c0490033 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Aug 16 09:24:13 EDT 2024 Thu Oct 10 18:24:27 EDT 2024 Sat Aug 24 01:11:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j3326-c518cbce7e64b35af2b294f9c688154cf9c651c8d24fd8be6b00b7893c0490033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1319-3270 |
PQID | 2024881699 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2011613595 proquest_journals_2024881699 wiley_primary_10_1002_adma_201705916_ADMA201705916 |
PublicationCentury | 2000 |
PublicationDate | April 12, 2018 |
PublicationDateYYYYMMDD | 2018-04-12 |
PublicationDate_xml | – month: 04 year: 2018 text: April 12, 2018 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 12 2017; 8 2017; 1 2017; 2 2015; 640 2015; 10 2014; 26 2008; 7 2006; 5 2017; 29 2013; 7 2013; 5 2017; 114 2012; 11 2016; 15 2014; 89 2014; 136 2011; 133 2017; 139 2016; 11 2015; 25 2015; 27 2007; 317 2017; 17 2013; 13 2013; 12 2016; 113 2014; 14 2013; 135 2011; 23 2013; 492 2016; 28 2012; 24 2014; 8 2014; 7 2016; 8 2014; 10 |
References_xml | – volume: 8 start-page: 923 year: 2014 publication-title: ACS Nano – volume: 17 start-page: 4908 year: 2017 publication-title: Nano Lett. – volume: 8 start-page: 6435 year: 2016 publication-title: Nanoscale – volume: 26 start-page: 8023 year: 2014 publication-title: Adv. Mater. – volume: 11 start-page: 963 year: 2012 publication-title: Nat. Mater. – volume: 15 start-page: 1003 year: 2016 publication-title: Nat. Mater. – volume: 8 start-page: 5125 year: 2014 publication-title: ACS Nano – volume: 139 start-page: 4623 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 845 year: 2016 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 909 year: 2006 publication-title: Nat. Mater. – volume: 5 start-page: 263 year: 2013 publication-title: Nat. Chem. – volume: 89 start-page: 155137 year: 2014 publication-title: Phys. Rev. B – volume: 136 start-page: 10053 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 48 year: 2016 publication-title: Nat. Mater. – volume: 28 start-page: 7613 year: 2016 publication-title: Chem. Mater. – volume: 139 start-page: 9019 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 024005 year: 2017 publication-title: Phys. Rev. Mater. – volume: 27 start-page: 5605 year: 2015 publication-title: Adv. Mater. – volume: 29 start-page: 1702359 year: 2017 publication-title: Adv. Mater. – volume: 10 start-page: 421 year: 2014 publication-title: Nat. Phys. – volume: 114 start-page: 6996 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 842 year: 2015 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 8963 year: 2013 publication-title: ACS Nano – volume: 113 start-page: 11420 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 24 start-page: 2320 year: 2012 publication-title: Adv. Mater. – volume: 29 start-page: 1700715 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 8945 year: 2016 publication-title: Adv. Mater. – volume: 10 start-page: 270 year: 2015 publication-title: Nat. Nanotechnol. – volume: 27 start-page: 7086 year: 2015 publication-title: Adv. Mater. – volume: 492 start-page: 64 year: 2013 publication-title: Phys. C – volume: 13 start-page: 6222 year: 2013 publication-title: Nano Lett. – volume: 23 start-page: 5021 year: 2011 publication-title: Adv. Mater. – volume: 8 start-page: 958 year: 2017 publication-title: Nat. Commun. – volume: 8 start-page: 14430 year: 2017 publication-title: Nat. Commun. – volume: 14 start-page: 553 year: 2014 publication-title: Nano Lett. – volume: 12 start-page: 92 year: 2015 publication-title: Nat. Phys. – volume: 2 start-page: 17127 year: 2017 publication-title: Nat. Energy – volume: 135 start-page: 10274 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 640 start-page: 133 year: 2015 publication-title: Surf. Sci. – volume: 17 start-page: 6802 year: 2017 publication-title: Nano Lett. – volume: 133 start-page: 17832 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 850 year: 2013 publication-title: Nat. Mater. – volume: 13 start-page: 1341 year: 2013 publication-title: Nano Lett. – volume: 317 start-page: 100 year: 2007 publication-title: Science – volume: 7 start-page: 797 year: 2014 publication-title: Energy Environ. Sci. – volume: 7 start-page: 960 year: 2008 publication-title: Nat. Mater. |
SSID | ssj0009606 |
Score | 2.5728617 |
Snippet | 2D metallic TaS2 is acting as an ideal platform for exploring fundamental physical issues (superconductivity, charge‐density wave, etc.) and for engineering... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e1705916 |
SubjectTerms | Catalysis Catalytic activity Charge density Chemical vapor deposition Density functional theory Electrocatalysts Gold hydrogen evolution reaction Hydrogen evolution reactions Materials science nanoporous gold Nanostructure phase states Substrates Superconductivity Synthesis Tafel slopes vertical tantalum disulfide |
Title | Vertical 1T‐TaS2 Synthesis on Nanoporous Gold for High‐Performance Electrocatalytic Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201705916 https://www.proquest.com/docview/2024881699 https://search.proquest.com/docview/2011613595 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JT8QgFMeJ8aQHd-O4BROv6EChheNEZzQmGqOj8dawTeKS1tiZw3jyI_gZ_SQ-6Gx61BtNoSnLgx_w-IPQIdcCsCHThFueEa6oIlpbSixzWSZ61rJmOJx8eZWe3_GLB_Ewc4q_1oeYLLgFy4j9dTBwbarjqWiodlE3KMjBAOJAJ0yTLPh0nd5M9aMCnkexvUQQlXI5Vm1ssuOfyX_w5SylxmGms4z0-Adr75Lno0HfHNn3X9qN_8nBCloaMShu1Y1mFc35Yg0tzigTriN3H_2tIRbtfn18dvUtw7fDAmixeqxwWWDolUtA93JQ4bPyxWFgXxx8RiDy9fQsAm7Xt-zERaIhfBC3ZjbMN9Bdp909OSejCxnIUwKYR6yg0hrrM59ykwjdY4Yp3lM2lRJQzIaQoFY6xntOGp-CTZsMiMiG_cVmkmyi-aIs_BbCMHLC3BRwUVvNqXOSJs546WGGRZVp6gbaHVdIPrKqKmdBgE3SVKkGOpi8BnsImxy68JDnPAANIIpQooFYLP38tdbtyGuFZpaHcs8n5Z63Ti9bk6ftvyTaQQsQliRKQO6i-f7bwO8Bq_TNfmyP39mD46E |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NTxQxGMefCB6Ug4pCWEWtCdfCttPOtMeNgKuwxMBiuDV920QhM8bdPeDJj-Bn9JP4tLNveJTbvLSTttOn_bV9-i_AnrASsaGyVHhRUaGZptZ6Rj0PVSVH3vNu2pw8OCv7l-LTlZx7E6a9MK0-xGLCLVlGbq-TgacJ6YOlaqgNWTgo6cEg46zBQ7T5Ip3ecHi-VJBKgJ7l9gpJdSnUXLexyw_uxr9DmKucmjua46fg5kls_Uuu96cTt-9__qPeeK88PIMnMwwlvbbebMKDWD-HjRVxwhcQvmSXawzFhn9-_R7aC04ubmsExvHXMWlqgg1zg_TeTMfkQ3MTCOIvSW4jGPjzcjsCOWoP2snzRLf4QdJbWTPfgsvjo-H7Pp2dyUC_FUh61EumvPOxiqVwhbQj7rgWI-1LpZDGfLqSzKvAxSgoF0s0a1chFPm0xNgtim1Yr5s67gDBzhOHp0iM1lvBQlCsCC6qiIMspl3XdmB3_kfMzLDGhicNNsVKrTvwbvEaTSKtc9g6Yp5NYhqkFKllB3gufvO9le4wrUgzN6nczaLcTe9w0FvcvfyfSG_hUX84ODWnH89OXsFjfK5oVoTchfXJj2l8jegycW9y5fwLEojnuQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bTxQxFMdPEBKjD96Jq6gl8bWw7bQz7eNGWPACIbAY3preJgHNDHF3H_DJj-Bn9JN42tkbPOrbXNpJe6an_fX2L8B7YSViQ2Wp8KKiQjNNrfWMeh6qStbe837anHx0XB6ei08X8mJlF3-nD7EYcEuekevr5ODXod5diobakHWDkhwMIs492BAl4m_CotOlgFTi86y2V0iqS6Hmso19vns7_i3AXMXU3M4MH4Odp7BbXvJtZzpxO_7nHfHG_8nCE3g0g1Ay6ErNU1iLzTN4uCJN-BzC17zgGkOx0Z9fv0f2jJOzmwZxcXw5Jm1DsFpukd3b6ZgctN8DQfgladEIBj5ZbkYg-90xO3mU6AY_SAYrM-Yv4Hy4P_pwSGcnMtCrAjmPesmUdz5WsRSukLbmjmtRa18qhSzm05VkXgUu6qBcLNGpXYVI5NMEY78oNmG9aZv4Egg2ndg5RV603goWgmJFcFFF7GIx7fq2B1vzH2JmbjU2PCmwKVZq3YPtxWt0iDTLYZuIeTaJaJBRpJY94Nn65roT7jCdRDM3ye5mYXcz2DsaLO5e_Uukd3D_ZG9ovnw8_vwaHuBjRbMc5BasT35M4xvklol7m4vmX3Gz5mg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertical+1T-TaS2+Synthesis+on+Nanoporous+Gold+for+High-Performance+Electrocatalytic+Applications&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Huan%2C+Yahuan&rft.au=Shi%2C+Jianping&rft.au=Zou%2C+Xiaolong&rft.au=Gong%2C+Yue&rft.date=2018-04-12&rft.eissn=1521-4095&rft.volume=30&rft.issue=15&rft.spage=e1705916&rft.epage=e1705916&rft_id=info:doi/10.1002%2Fadma.201705916&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |