Defect‐Engineered Atomically Thin MoS2 Homogeneous Electronics for Logic Inverters
Ultrathin molybdenum disulfide (MoS2) presents ideal properties for building next‐generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon‐based doping schemes, such as atomic substitution and ion implantation, as they cause...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 2; pp. e1906646 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrathin molybdenum disulfide (MoS2) presents ideal properties for building next‐generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon‐based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy‐matched electron induction of the solution process, numerous pure and lattice‐stable monosulfur vacancies (Vmonos) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos, an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand‐new and practical design route of defect modulation for 2D‐based circuit development is provided.
Accurate and facile solution‐processable defect engineering is proposed for constructing atomic‐thin MoS2 homogeneous electronics. By utilizing the energy‐matched relationship between the formation energy of monosulfur vacancies (Vmonos) and the electron induction energy of H2O2 aqueous solution, numerous pure and lattice‐stable Vmonos are introduced for modulating electronic structure to construct homogeneous electronics including a logic inverter via the shallow trapping effect. |
---|---|
AbstractList | Ultrathin molybdenum disulfide (MoS2) presents ideal properties for building next‐generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon‐based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy‐matched electron induction of the solution process, numerous pure and lattice‐stable monosulfur vacancies (Vmonos) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos, an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand‐new and practical design route of defect modulation for 2D‐based circuit development is provided. Ultrathin molybdenum disulfide (MoS2 ) presents ideal properties for building next-generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon-based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy-matched electron induction of the solution process, numerous pure and lattice-stable monosulfur vacancies (Vmonos ) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos , an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand-new and practical design route of defect modulation for 2D-based circuit development is provided.Ultrathin molybdenum disulfide (MoS2 ) presents ideal properties for building next-generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon-based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy-matched electron induction of the solution process, numerous pure and lattice-stable monosulfur vacancies (Vmonos ) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos , an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand-new and practical design route of defect modulation for 2D-based circuit development is provided. Ultrathin molybdenum disulfide (MoS2) presents ideal properties for building next‐generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon‐based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy‐matched electron induction of the solution process, numerous pure and lattice‐stable monosulfur vacancies (Vmonos) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos, an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand‐new and practical design route of defect modulation for 2D‐based circuit development is provided. Accurate and facile solution‐processable defect engineering is proposed for constructing atomic‐thin MoS2 homogeneous electronics. By utilizing the energy‐matched relationship between the formation energy of monosulfur vacancies (Vmonos) and the electron induction energy of H2O2 aqueous solution, numerous pure and lattice‐stable Vmonos are introduced for modulating electronic structure to construct homogeneous electronics including a logic inverter via the shallow trapping effect. |
Author | Liu, Xiaozhi Xiao, Jiankun Gu, Lin Liu, Baishan Ou, Yang Zhang, Zheng Zhang, Yue Du, Junli Gao, Li Liao, Qingliang Kang, Zhuo Zhang, Xiankun |
Author_xml | – sequence: 1 givenname: Li surname: Gao fullname: Gao, Li organization: University of Science and Technology Beijing – sequence: 2 givenname: Qingliang surname: Liao fullname: Liao, Qingliang organization: University of Science and Technology Beijing – sequence: 3 givenname: Xiankun orcidid: 0000-0001-9654-4659 surname: Zhang fullname: Zhang, Xiankun organization: University of Science and Technology Beijing – sequence: 4 givenname: Xiaozhi surname: Liu fullname: Liu, Xiaozhi organization: Chinese Academy of Sciences – sequence: 5 givenname: Lin surname: Gu fullname: Gu, Lin organization: Chinese Academy of Sciences – sequence: 6 givenname: Baishan surname: Liu fullname: Liu, Baishan organization: University of Science and Technology Beijing – sequence: 7 givenname: Junli surname: Du fullname: Du, Junli organization: University of Science and Technology Beijing – sequence: 8 givenname: Yang surname: Ou fullname: Ou, Yang organization: University of Science and Technology Beijing – sequence: 9 givenname: Jiankun surname: Xiao fullname: Xiao, Jiankun organization: University of Science and Technology Beijing – sequence: 10 givenname: Zhuo surname: Kang fullname: Kang, Zhuo organization: University of Science and Technology Beijing – sequence: 11 givenname: Zheng surname: Zhang fullname: Zhang, Zheng email: zhangzheng@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 12 givenname: Yue orcidid: 0000-0002-8213-1420 surname: Zhang fullname: Zhang, Yue email: yuezhang@ustb.edu.cn organization: University of Science and Technology Beijing |
BookMark | eNpdkLFOwzAURS1UJNrCymyJhSXl2U4ce6zaQisVMVDmyEleSqrELk4K6sYn8I18CSlFHZiurnTe09UZkJ51Fgm5ZjBiAPzO5LUZcWAapAzlGemziLMgBB31SB-0iAItQ3VBBk2zAQAtQfbJaooFZu3359fMrkuL6DGn49bVZWaqak9Xr6Wlj-6Z07mr3Rotul1DZ1V3450ts4YWztOlW5cZXdh39C365pKcF6Zq8Oovh-TlfraazIPl08NiMl4GGyG4DESaCp4yFed5lCqGmSxUVDARRzHwLEwLGeYZRwWQ5spAjDyGNDICGMRKKRRDcnv8u_XubYdNm9Rlk2FVmd-ZCRdMhlxr4B168w_duJ233bqOEjEDFkrdUfpIfZQV7pOtL2vj9wmD5GA4ORhOToaT8fRxfGriB5Dzc1c |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201906646 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201906646 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51527802; 51602020; 51972022; 51722203; 51672026 – fundername: National Key Research and Development Program of China funderid: 2016YFA0202701; 2018YFA0703503 – fundername: Fundamental Research Funds for the Central Universities funderid: FRF‐TP‐18‐004A2; FRF‐TP‐18‐001C1 – fundername: Natural Science Foundation of Beijing Municipality funderid: Z180011 – fundername: Overseas Expertise Introduction Project for Discipline Innovation funderid: B14003 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-j3326-3bb32b187dd5b81ec6f85f1375702c4bf64dc2e800bd8a07e270b5a30107888e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 01:31:12 EDT 2025 Fri Jul 25 22:31:44 EDT 2025 Wed Jan 22 16:37:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j3326-3bb32b187dd5b81ec6f85f1375702c4bf64dc2e800bd8a07e270b5a30107888e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9654-4659 0000-0002-8213-1420 |
PQID | 2337101469 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2316429902 proquest_journals_2337101469 wiley_primary_10_1002_adma_201906646_ADMA201906646 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 119 2017; 8 2013; 25 2017; 4 1997; 44 2019; 10 2019; 13 2018; 123 2019; 14 1989; 111 2019; 58 2014; 26 2019; 19 1998; 45 2019; 364 2018; 9 2018; 8 2014; 5 2018; 5 2018; 4 2015; 137 2013; 13 2013; 12 2016; 354 2018; 30 2014; 8 2018; 28 2015; 6 2019; 5 1966; 37 2019; 31 2013; 88 2017; 27 2013; 588 2013; 189 2016; 10 2016; 204 2015; 9 2016; 16 2016; 15 2012; 109 2016; 4 2018; 18 2016; 7 2018; 557 2017; 17 2018; 12 2016; 28 2016; 26 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 15 start-page: 364 year: 2016 publication-title: Nat. Mater. – volume: 13 start-page: 2831 year: 2013 publication-title: Nano Lett. – volume: 16 start-page: 5213 year: 2016 publication-title: Nano Lett. – volume: 28 year: 2016 publication-title: J. Phys.: Condens. Matter – volume: 18 start-page: 482 year: 2018 publication-title: Nano Lett. – volume: 364 start-page: 468 year: 2019 publication-title: Science – volume: 17 start-page: 5502 year: 2017 publication-title: Nano Lett. – volume: 5 start-page: 5290 year: 2014 publication-title: Nat. Commun. – volume: 8 start-page: 970 year: 2017 publication-title: Nat. Commun. – volume: 58 start-page: 85 year: 2019 publication-title: Nano Energy – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 44 start-page: 627 year: 1997 publication-title: IEEE Trans. Electron Devices – volume: 8 start-page: 5738 year: 2014 publication-title: ACS Nano – volume: 25 start-page: 5807 year: 2013 publication-title: Adv. Mater. – volume: 123 year: 2018 publication-title: J. Appl. Phys. – volume: 557 start-page: 696 year: 2018 publication-title: Nature – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 12 start-page: 815 year: 2013 publication-title: Nat. Mater. – volume: 88 start-page: 3239 year: 2013 publication-title: Phys. Rev. B – volume: 13 start-page: 3023 year: 2013 publication-title: Nano Lett. – volume: 26 start-page: 1938 year: 2016 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 4134 year: 2016 publication-title: ACS Nano – volume: 19 start-page: 6078 year: 2019 publication-title: Nano Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 9057 year: 2019 publication-title: ACS Nano – volume: 14 start-page: 223 year: 2019 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 8044 year: 2015 publication-title: ACS Nano – volume: 13 start-page: 6050 year: 2019 publication-title: ACS Nano – volume: 26 start-page: 2857 year: 2014 publication-title: Adv. Mater. – volume: 13 start-page: 2615 year: 2013 publication-title: Nano Lett. – volume: 6 start-page: 6293 year: 2015 publication-title: Nat. Commun. – volume: 45 start-page: 1116 year: 1998 publication-title: IEEE Trans. Electron Devices – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 37 start-page: 3137 year: 1966 publication-title: J. Appl. Phys. – volume: 9 start-page: 4847 year: 2018 publication-title: Nat. Commun. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – volume: 354 start-page: 99 year: 2016 publication-title: Science – volume: 8 year: 2014 publication-title: ACS Nano – volume: 8 start-page: 572 year: 2017 publication-title: Nat. Commun. – volume: 13 start-page: 100 year: 2013 publication-title: Nano Lett. – volume: 204 start-page: 1151 year: 2016 publication-title: IEEE Electron Device Lett. – volume: 12 start-page: 207 year: 2013 publication-title: Nat. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 28 start-page: 6985 year: 2016 publication-title: Adv. Mater. – volume: 13 start-page: 3280 year: 2019 publication-title: ACS Nano – volume: 12 start-page: 5368 year: 2018 publication-title: ACS Nano – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 10 start-page: 1 year: 2019 publication-title: Nat. Commun. – volume: 4 year: 2016 publication-title: 2D Mater. – volume: 12 start-page: 2569 year: 2018 publication-title: ACS Nano – volume: 111 start-page: 9003 year: 1989 publication-title: J. Am. Chem. Soc. – volume: 588 start-page: 198 year: 2013 publication-title: Chem. Phys. Lett. – volume: 189 start-page: 11 year: 2013 publication-title: J. Electron Spectrosc. Relat. Phenom. |
SSID | ssj0009606 |
Score | 2.610273 |
Snippet | Ultrathin molybdenum disulfide (MoS2) presents ideal properties for building next‐generation atomically thin circuitry. However, it is difficult to construct... Ultrathin molybdenum disulfide (MoS2 ) presents ideal properties for building next-generation atomically thin circuitry. However, it is difficult to construct... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e1906646 |
SubjectTerms | Circuit design Circuits defect engineering Defects Design defects Disruption Doping Electronic structure electronic structure modulation Electronics Inverters Ion implantation Lattice vacancies Logic logic inverters Materials science Modulation Molybdenum disulfide monolayer MoS2 Monolayers sulfur vacancies Voltage gain Work functions |
Title | Defect‐Engineered Atomically Thin MoS2 Homogeneous Electronics for Logic Inverters |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201906646 https://www.proquest.com/docview/2337101469 https://www.proquest.com/docview/2316429902 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMct1AkG3ohCQUZiTZvaiZ2OEW1VIZUBWqlbZCfOwKNBJB1g4iPwGfkk3DlN2jLClqcU22ff_xz7d4Rcewo0LLgBJ1CYwkzzrgNxlnKk0X4qEU-icDfy-E6Mpt7tzJ-t7eIv-RD1hBv2DDteYwdXOu-soKEqsdwgcGhCeMjcxgVbqIruV_wolOcWtsd9pye8oKI2uqyz-fqGvlxXqdbNDPeIqj6wXF3y1F4Uuh1__GI3_qcE-2R3qUFpWBrNAdky80Oys0YmPCKTvsF1Ht-fX9Vlk9CwyCxc4PmdYrpPOs4eGB1lLxkYockWOR3UOXVyCmKYYiLnmCLKAxeO5sdkOhxMbkbOMgGD88hB1jlca850N5BJ4uuga2KRBn7a5dKXLos9nQoviZkBzakTaGtpmHS1r2DMcDGyNvyENObZ3JwSCjopAXfci3WMwHc44MwPVCDAV5iUySZpVQ0QLXtRHjHOJeYSFr0muapvg_3jTw1lSwbPQMCHPpU1CbO1Hb2WnI6oJDKzCOs5qus5CvvjsD47-8tL52SbYdhtZ2JapFG8LcwFaJNCX1r7-wFVIdyC |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYCBN6JQwEisgdZO7HSsaKsCLQO0ElsUJ87Ao0G0HWDiJ_Ab-SXcOU1KGWHLy1L8ON939vn7AE7dEDEsugHHD0nCTIuag3FW6CijvUQRPUlIp5F7N7IzcK_uvTybkM7CZPwQxYIbWYadr8nAaUH6fMYaGsaWOAg9mpSuXIQlkvW2UdXtjEGKALql2xOeU5eun_M2Vvn5fPk5hPkTp1pH014Hnf9ill_yeDYZ67Po_Rd747_qsAFrUxjKGtm42YQFM9yC1R_khNvQbxpK9fj6-Mwfm5g1xqnlF3h6Y6T4yXrpHWed9DnFcWjSyYi1ClmdEUM8zEjLOWLE5kG5o6MdGLRb_YuOM9VgcB4EIjtHaC24rvkqjj3t10wkE99LakJ5qsojVyfSjSNuEHbqGLtbGa6q2gtx2qhScG3ELpSG6dDsAUOoFKNHrkc6Is53vBDc80NforswCVdlqOQ9EEwNaRRwIRTJCct6GU6K12gCtK8R2prhNxjzkVvlZeC2uYOXjKojyEiZeUDtHBTtHDSavUZxt_-XQsew3On3ukH38ub6AFY4ReF2YaYCpfHrxBwiVBnrIzsYvwEsreCd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZHLBKCAzuiUMBIXAOpndjpsaKtylKEWCRukZ04B5YG0fYAJx6BZ-RJmHHaUDjCLasU22PPP479DcBBoFHDohvwIk0pzIyoeRhnaU9ZE2aK8CSadiN3L2TnNji9C-8mdvEXfIhywo16hhuvqYM_p9nRNzRUp44bhA5NykBOw2wg_Yjsunn1DZAife5oeyL06jKIxthGnx_9fP-HwJyUqc7PtJdAj7-wWF7ycDgcmMPk7Re88T9FWIbFkQhljcJqVmDK9lZhYQJNuAY3TUsLPT7fP8aXbcoag9zRBR5fGeX7ZN38mrNO_pSjFdp82GetMqlOn6EaZpTJOWHE8qCVo_11uG23bo473igDg3cvUNd5whjBTS1SaRqaqGYTmUVhVhMqVD5PApPJIE24RdFpUmxsZbnyTahx0PAptLZiA2Z6ec9uAkOhlKI_ricmIeI7HggeRjqS6CxsxlUFquMGiEfdqB9zIRQlE5b1CuyXt7ED0F8N7UqGz2DER06VV4C72o6fC1BHXCCZeUz1HJf1HDea3UZ5tvWXl_Zg7rLZjs9PLs62YZ5TCO5mZaowM3gZ2h3UKQOz60zxC7pJ31U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect-Engineered+Atomically+Thin+MoS2+Homogeneous+Electronics+for+Logic+Inverters&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gao%2C+Li&rft.au=Liao%2C+Qingliang&rft.au=Zhang%2C+Xiankun&rft.au=Liu%2C+Xiaozhi&rft.date=2020-01-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=2&rft.spage=e1906646&rft_id=info:doi/10.1002%2Fadma.201906646&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |