Defect‐Engineered Atomically Thin MoS2 Homogeneous Electronics for Logic Inverters

Ultrathin molybdenum disulfide (MoS2) presents ideal properties for building next‐generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon‐based doping schemes, such as atomic substitution and ion implantation, as they cause...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 2; pp. e1906646 - n/a
Main Authors Gao, Li, Liao, Qingliang, Zhang, Xiankun, Liu, Xiaozhi, Gu, Lin, Liu, Baishan, Du, Junli, Ou, Yang, Xiao, Jiankun, Kang, Zhuo, Zhang, Zheng, Zhang, Yue
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrathin molybdenum disulfide (MoS2) presents ideal properties for building next‐generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon‐based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy‐matched electron induction of the solution process, numerous pure and lattice‐stable monosulfur vacancies (Vmonos) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos, an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand‐new and practical design route of defect modulation for 2D‐based circuit development is provided. Accurate and facile solution‐processable defect engineering is proposed for constructing atomic‐thin MoS2 homogeneous electronics. By utilizing the energy‐matched relationship between the formation energy of monosulfur vacancies (Vmonos) and the electron induction energy of H2O2 aqueous solution, numerous pure and lattice‐stable Vmonos are introduced for modulating electronic structure to construct homogeneous electronics including a logic inverter via the shallow trapping effect.
AbstractList Ultrathin molybdenum disulfide (MoS2) presents ideal properties for building next‐generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon‐based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy‐matched electron induction of the solution process, numerous pure and lattice‐stable monosulfur vacancies (Vmonos) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos, an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand‐new and practical design route of defect modulation for 2D‐based circuit development is provided.
Ultrathin molybdenum disulfide (MoS2 ) presents ideal properties for building next-generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon-based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy-matched electron induction of the solution process, numerous pure and lattice-stable monosulfur vacancies (Vmonos ) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos , an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand-new and practical design route of defect modulation for 2D-based circuit development is provided.Ultrathin molybdenum disulfide (MoS2 ) presents ideal properties for building next-generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon-based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy-matched electron induction of the solution process, numerous pure and lattice-stable monosulfur vacancies (Vmonos ) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos , an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand-new and practical design route of defect modulation for 2D-based circuit development is provided.
Ultrathin molybdenum disulfide (MoS2) presents ideal properties for building next‐generation atomically thin circuitry. However, it is difficult to construct logic units of MoS2 monolayer using traditional silicon‐based doping schemes, such as atomic substitution and ion implantation, as they cause lattice disruption and doping instability. An accurate and feasible electronic structure modulation strategy from defect engineering is proposed to construct homogeneous electronics for MoS2 monolayer logic inverters. By utilizing the energy‐matched electron induction of the solution process, numerous pure and lattice‐stable monosulfur vacancies (Vmonos) are introduced to modulate the electronic structure of monolayer MoS2 via a shallow trapping effect. The resulting modulation effectively reduces the electronic concentration of MoS2 and improves the work function by 100 meV. Under modulation of Vmonos, an atomically thin homogenous monolayer MoS2 logic inverter with a voltage gain of 4 is successfully constructed. A brand‐new and practical design route of defect modulation for 2D‐based circuit development is provided. Accurate and facile solution‐processable defect engineering is proposed for constructing atomic‐thin MoS2 homogeneous electronics. By utilizing the energy‐matched relationship between the formation energy of monosulfur vacancies (Vmonos) and the electron induction energy of H2O2 aqueous solution, numerous pure and lattice‐stable Vmonos are introduced for modulating electronic structure to construct homogeneous electronics including a logic inverter via the shallow trapping effect.
Author Liu, Xiaozhi
Xiao, Jiankun
Gu, Lin
Liu, Baishan
Ou, Yang
Zhang, Zheng
Zhang, Yue
Du, Junli
Gao, Li
Liao, Qingliang
Kang, Zhuo
Zhang, Xiankun
Author_xml – sequence: 1
  givenname: Li
  surname: Gao
  fullname: Gao, Li
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Qingliang
  surname: Liao
  fullname: Liao, Qingliang
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Xiankun
  orcidid: 0000-0001-9654-4659
  surname: Zhang
  fullname: Zhang, Xiankun
  organization: University of Science and Technology Beijing
– sequence: 4
  givenname: Xiaozhi
  surname: Liu
  fullname: Liu, Xiaozhi
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Baishan
  surname: Liu
  fullname: Liu, Baishan
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Junli
  surname: Du
  fullname: Du, Junli
  organization: University of Science and Technology Beijing
– sequence: 8
  givenname: Yang
  surname: Ou
  fullname: Ou, Yang
  organization: University of Science and Technology Beijing
– sequence: 9
  givenname: Jiankun
  surname: Xiao
  fullname: Xiao, Jiankun
  organization: University of Science and Technology Beijing
– sequence: 10
  givenname: Zhuo
  surname: Kang
  fullname: Kang, Zhuo
  organization: University of Science and Technology Beijing
– sequence: 11
  givenname: Zheng
  surname: Zhang
  fullname: Zhang, Zheng
  email: zhangzheng@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 12
  givenname: Yue
  orcidid: 0000-0002-8213-1420
  surname: Zhang
  fullname: Zhang, Yue
  email: yuezhang@ustb.edu.cn
  organization: University of Science and Technology Beijing
BookMark eNpdkLFOwzAURS1UJNrCymyJhSXl2U4ce6zaQisVMVDmyEleSqrELk4K6sYn8I18CSlFHZiurnTe09UZkJ51Fgm5ZjBiAPzO5LUZcWAapAzlGemziLMgBB31SB-0iAItQ3VBBk2zAQAtQfbJaooFZu3359fMrkuL6DGn49bVZWaqak9Xr6Wlj-6Z07mr3Rotul1DZ1V3450ts4YWztOlW5cZXdh39C365pKcF6Zq8Oovh-TlfraazIPl08NiMl4GGyG4DESaCp4yFed5lCqGmSxUVDARRzHwLEwLGeYZRwWQ5spAjDyGNDICGMRKKRRDcnv8u_XubYdNm9Rlk2FVmd-ZCRdMhlxr4B168w_duJ233bqOEjEDFkrdUfpIfZQV7pOtL2vj9wmD5GA4ORhOToaT8fRxfGriB5Dzc1c
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201906646
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201906646
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51527802; 51602020; 51972022; 51722203; 51672026
– fundername: National Key Research and Development Program of China
  funderid: 2016YFA0202701; 2018YFA0703503
– fundername: Fundamental Research Funds for the Central Universities
  funderid: FRF‐TP‐18‐004A2; FRF‐TP‐18‐001C1
– fundername: Natural Science Foundation of Beijing Municipality
  funderid: Z180011
– fundername: Overseas Expertise Introduction Project for Discipline Innovation
  funderid: B14003
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-j3326-3bb32b187dd5b81ec6f85f1375702c4bf64dc2e800bd8a07e270b5a30107888e3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 01:31:12 EDT 2025
Fri Jul 25 22:31:44 EDT 2025
Wed Jan 22 16:37:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j3326-3bb32b187dd5b81ec6f85f1375702c4bf64dc2e800bd8a07e270b5a30107888e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9654-4659
0000-0002-8213-1420
PQID 2337101469
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2316429902
proquest_journals_2337101469
wiley_primary_10_1002_adma_201906646_ADMA201906646
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 119
2017; 8
2013; 25
2017; 4
1997; 44
2019; 10
2019; 13
2018; 123
2019; 14
1989; 111
2019; 58
2014; 26
2019; 19
1998; 45
2019; 364
2018; 9
2018; 8
2014; 5
2018; 5
2018; 4
2015; 137
2013; 13
2013; 12
2016; 354
2018; 30
2014; 8
2018; 28
2015; 6
2019; 5
1966; 37
2019; 31
2013; 88
2017; 27
2013; 588
2013; 189
2016; 10
2016; 204
2015; 9
2016; 16
2016; 15
2012; 109
2016; 4
2018; 18
2016; 7
2018; 557
2017; 17
2018; 12
2016; 28
2016; 26
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 364
  year: 2016
  publication-title: Nat. Mater.
– volume: 13
  start-page: 2831
  year: 2013
  publication-title: Nano Lett.
– volume: 16
  start-page: 5213
  year: 2016
  publication-title: Nano Lett.
– volume: 28
  year: 2016
  publication-title: J. Phys.: Condens. Matter
– volume: 18
  start-page: 482
  year: 2018
  publication-title: Nano Lett.
– volume: 364
  start-page: 468
  year: 2019
  publication-title: Science
– volume: 17
  start-page: 5502
  year: 2017
  publication-title: Nano Lett.
– volume: 5
  start-page: 5290
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  start-page: 970
  year: 2017
  publication-title: Nat. Commun.
– volume: 58
  start-page: 85
  year: 2019
  publication-title: Nano Energy
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 44
  start-page: 627
  year: 1997
  publication-title: IEEE Trans. Electron Devices
– volume: 8
  start-page: 5738
  year: 2014
  publication-title: ACS Nano
– volume: 25
  start-page: 5807
  year: 2013
  publication-title: Adv. Mater.
– volume: 123
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 557
  start-page: 696
  year: 2018
  publication-title: Nature
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 12
  start-page: 815
  year: 2013
  publication-title: Nat. Mater.
– volume: 88
  start-page: 3239
  year: 2013
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 3023
  year: 2013
  publication-title: Nano Lett.
– volume: 26
  start-page: 1938
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 4134
  year: 2016
  publication-title: ACS Nano
– volume: 19
  start-page: 6078
  year: 2019
  publication-title: Nano Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 9057
  year: 2019
  publication-title: ACS Nano
– volume: 14
  start-page: 223
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 8044
  year: 2015
  publication-title: ACS Nano
– volume: 13
  start-page: 6050
  year: 2019
  publication-title: ACS Nano
– volume: 26
  start-page: 2857
  year: 2014
  publication-title: Adv. Mater.
– volume: 13
  start-page: 2615
  year: 2013
  publication-title: Nano Lett.
– volume: 6
  start-page: 6293
  year: 2015
  publication-title: Nat. Commun.
– volume: 45
  start-page: 1116
  year: 1998
  publication-title: IEEE Trans. Electron Devices
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 37
  start-page: 3137
  year: 1966
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 4847
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 354
  start-page: 99
  year: 2016
  publication-title: Science
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 8
  start-page: 572
  year: 2017
  publication-title: Nat. Commun.
– volume: 13
  start-page: 100
  year: 2013
  publication-title: Nano Lett.
– volume: 204
  start-page: 1151
  year: 2016
  publication-title: IEEE Electron Device Lett.
– volume: 12
  start-page: 207
  year: 2013
  publication-title: Nat. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6985
  year: 2016
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3280
  year: 2019
  publication-title: ACS Nano
– volume: 12
  start-page: 5368
  year: 2018
  publication-title: ACS Nano
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 10
  start-page: 1
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  year: 2016
  publication-title: 2D Mater.
– volume: 12
  start-page: 2569
  year: 2018
  publication-title: ACS Nano
– volume: 111
  start-page: 9003
  year: 1989
  publication-title: J. Am. Chem. Soc.
– volume: 588
  start-page: 198
  year: 2013
  publication-title: Chem. Phys. Lett.
– volume: 189
  start-page: 11
  year: 2013
  publication-title: J. Electron Spectrosc. Relat. Phenom.
SSID ssj0009606
Score 2.610273
Snippet Ultrathin molybdenum disulfide (MoS2) presents ideal properties for building next‐generation atomically thin circuitry. However, it is difficult to construct...
Ultrathin molybdenum disulfide (MoS2 ) presents ideal properties for building next-generation atomically thin circuitry. However, it is difficult to construct...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e1906646
SubjectTerms Circuit design
Circuits
defect engineering
Defects
Design defects
Disruption
Doping
Electronic structure
electronic structure modulation
Electronics
Inverters
Ion implantation
Lattice vacancies
Logic
logic inverters
Materials science
Modulation
Molybdenum disulfide
monolayer MoS2
Monolayers
sulfur vacancies
Voltage gain
Work functions
Title Defect‐Engineered Atomically Thin MoS2 Homogeneous Electronics for Logic Inverters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201906646
https://www.proquest.com/docview/2337101469
https://www.proquest.com/docview/2316429902
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMct1AkG3ohCQUZiTZvaiZ2OEW1VIZUBWqlbZCfOwKNBJB1g4iPwGfkk3DlN2jLClqcU22ff_xz7d4Rcewo0LLgBJ1CYwkzzrgNxlnKk0X4qEU-icDfy-E6Mpt7tzJ-t7eIv-RD1hBv2DDteYwdXOu-soKEqsdwgcGhCeMjcxgVbqIruV_wolOcWtsd9pye8oKI2uqyz-fqGvlxXqdbNDPeIqj6wXF3y1F4Uuh1__GI3_qcE-2R3qUFpWBrNAdky80Oys0YmPCKTvsF1Ht-fX9Vlk9CwyCxc4PmdYrpPOs4eGB1lLxkYockWOR3UOXVyCmKYYiLnmCLKAxeO5sdkOhxMbkbOMgGD88hB1jlca850N5BJ4uuga2KRBn7a5dKXLos9nQoviZkBzakTaGtpmHS1r2DMcDGyNvyENObZ3JwSCjopAXfci3WMwHc44MwPVCDAV5iUySZpVQ0QLXtRHjHOJeYSFr0muapvg_3jTw1lSwbPQMCHPpU1CbO1Hb2WnI6oJDKzCOs5qus5CvvjsD47-8tL52SbYdhtZ2JapFG8LcwFaJNCX1r7-wFVIdyC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGYCBN6JQwEisgdZO7HSsaKsCLQO0ElsUJ87Ao0G0HWDiJ_Ab-SXcOU1KGWHLy1L8ON939vn7AE7dEDEsugHHD0nCTIuag3FW6CijvUQRPUlIp5F7N7IzcK_uvTybkM7CZPwQxYIbWYadr8nAaUH6fMYaGsaWOAg9mpSuXIQlkvW2UdXtjEGKALql2xOeU5eun_M2Vvn5fPk5hPkTp1pH014Hnf9ill_yeDYZ67Po_Rd747_qsAFrUxjKGtm42YQFM9yC1R_khNvQbxpK9fj6-Mwfm5g1xqnlF3h6Y6T4yXrpHWed9DnFcWjSyYi1ClmdEUM8zEjLOWLE5kG5o6MdGLRb_YuOM9VgcB4EIjtHaC24rvkqjj3t10wkE99LakJ5qsojVyfSjSNuEHbqGLtbGa6q2gtx2qhScG3ELpSG6dDsAUOoFKNHrkc6Is53vBDc80NforswCVdlqOQ9EEwNaRRwIRTJCct6GU6K12gCtK8R2prhNxjzkVvlZeC2uYOXjKojyEiZeUDtHBTtHDSavUZxt_-XQsew3On3ukH38ub6AFY4ReF2YaYCpfHrxBwiVBnrIzsYvwEsreCd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIZHLBKCAzuiUMBIXAOpndjpsaKtylKEWCRukZ04B5YG0fYAJx6BZ-RJmHHaUDjCLasU22PPP479DcBBoFHDohvwIk0pzIyoeRhnaU9ZE2aK8CSadiN3L2TnNji9C-8mdvEXfIhywo16hhuvqYM_p9nRNzRUp44bhA5NykBOw2wg_Yjsunn1DZAife5oeyL06jKIxthGnx_9fP-HwJyUqc7PtJdAj7-wWF7ycDgcmMPk7Re88T9FWIbFkQhljcJqVmDK9lZhYQJNuAY3TUsLPT7fP8aXbcoag9zRBR5fGeX7ZN38mrNO_pSjFdp82GetMqlOn6EaZpTJOWHE8qCVo_11uG23bo473igDg3cvUNd5whjBTS1SaRqaqGYTmUVhVhMqVD5PApPJIE24RdFpUmxsZbnyTahx0PAptLZiA2Z6ec9uAkOhlKI_ricmIeI7HggeRjqS6CxsxlUFquMGiEfdqB9zIRQlE5b1CuyXt7ED0F8N7UqGz2DER06VV4C72o6fC1BHXCCZeUz1HJf1HDea3UZ5tvWXl_Zg7rLZjs9PLs62YZ5TCO5mZaowM3gZ2h3UKQOz60zxC7pJ31U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect-Engineered+Atomically+Thin+MoS2+Homogeneous+Electronics+for+Logic+Inverters&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Gao%2C+Li&rft.au=Liao%2C+Qingliang&rft.au=Zhang%2C+Xiankun&rft.au=Liu%2C+Xiaozhi&rft.date=2020-01-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=32&rft.issue=2&rft.spage=e1906646&rft_id=info:doi/10.1002%2Fadma.201906646&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon