Missing‐linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation
Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 41; pp. e202210466 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
10.10.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing‐linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2/N2, and 54 for CO2/CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations.
The defect engineering strategy is developed for the bottom‐up fabrication of facilitated transport covalent organic framework membranes with missing‐linker defects for efficient CO2 separation. |
---|---|
AbstractList | Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing-linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2 /N2 , and 54 for CO2 /CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations.Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing-linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2 /N2 , and 54 for CO2 /CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations. Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing‐linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2/N2, and 54 for CO2/CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations. The defect engineering strategy is developed for the bottom‐up fabrication of facilitated transport covalent organic framework membranes with missing‐linker defects for efficient CO2 separation. Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing‐linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2/N2, and 54 for CO2/CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations. |
Author | Zhu, Shiyi Jiang, Haifei Liang, Xu Wang, Yuhan Li, Yonghong Song, Shuqing Guo, Zheyuan Ren, Yanxiong Jiang, Zhongyi Wu, Hong Chen, Yu He, Guangwei |
Author_xml | – sequence: 1 givenname: Zheyuan orcidid: 0000-0003-3389-1092 surname: Guo fullname: Guo, Zheyuan organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 2 givenname: Hong orcidid: 0000-0001-6600-4459 surname: Wu fullname: Wu, Hong email: wuhong@tju.edu.cn organization: Tianjin University – sequence: 3 givenname: Yu surname: Chen fullname: Chen, Yu organization: Tianjin University – sequence: 4 givenname: Shiyi surname: Zhu fullname: Zhu, Shiyi organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 5 givenname: Haifei surname: Jiang fullname: Jiang, Haifei organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 6 givenname: Shuqing surname: Song fullname: Song, Shuqing organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 7 givenname: Yanxiong surname: Ren fullname: Ren, Yanxiong organization: International Campus of Tianjin University – sequence: 8 givenname: Yuhan surname: Wang fullname: Wang, Yuhan organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 9 givenname: Xu surname: Liang fullname: Liang, Xu organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 10 givenname: Guangwei surname: He fullname: He, Guangwei organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 11 givenname: Yonghong surname: Li fullname: Li, Yonghong organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 12 givenname: Zhongyi orcidid: 0000-0002-0048-8849 surname: Jiang fullname: Jiang, Zhongyi email: zhyjiang@tju.edu.cn organization: Tianjin University |
BookMark | eNpdkL1OwzAUhS0EEqWwMltiYUnxT2I7IyrlRyp0AEYUOeYauU2cYqdU3XgEnpEnwVURA3e590jfPTo6R2jfdx4QOqVkRAlhF9o7GDHCGCW5EHtoQAtGMy4l3093znkmVUEP0VGM88QrRcQAvdy7GJ1_-_78apxfQMBXYMH0ETuPx92HbsD3eBbekrvB10G3sO7CAt9DWwftIWLbBTyx1hm3Jcczhh9hqYPuXeeP0YHVTYST3z1Ez9eTp_FtNp3d3I0vp9mccyYySkEyw5VgigngwGxd20KlKUVKWQhijc3JKzcyz0FZm56s1GVdFsaawvIhOt_5LkP3voLYV62LBpomJexWsWKS8FLxQvGEnv1D590q-JQuUbTkVDIhE1XuqLVrYFMtg2t12FSUVNuqq23V1V_V1eXD3eRP8R861Haq |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202210466 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202210466 |
Genre | article |
GrantInformation_xml | – fundername: Chemistry and Chemical Engineering Guangdong Laboratory funderid: 1922013 – fundername: Program of Introducing Talents of Discipline to Universities funderid: BP0618007 – fundername: National Natural Science Foundation of China funderid: U20B2023; 21878215; 21621004; 21838008 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-j3326-11e72c3862826e3e2fbbf5888896806560fcf40d3c744e8ff326f7a9b95cfc5f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 12:29:36 EDT 2025 Sun Jul 13 04:53:54 EDT 2025 Wed Jan 22 16:23:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j3326-11e72c3862826e3e2fbbf5888896806560fcf40d3c744e8ff326f7a9b95cfc5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3389-1092 0000-0001-6600-4459 0000-0002-0048-8849 |
PQID | 2719317267 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2703983583 proquest_journals_2719317267 wiley_primary_10_1002_anie_202210466_ANIE202210466 |
PublicationCentury | 2000 |
PublicationDate | October 10, 2022 |
PublicationDateYYYYMMDD | 2022-10-10 |
PublicationDate_xml | – month: 10 year: 2022 text: October 10, 2022 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2022; 376 2017; 8 2015; 6 2021; 20 2018; 140 2019; 53 2015; 124 2020; 120 2020; 142 2019; 11 2019; 10 2016; 52 2020; 56 2020; 32 2021; 121 2019; 141 2012; 11 2022; 653 2020; 18 2020; 8 2018; 6 2020; 6 2021; 15 2021; 31 2015; 137 2020; 30 2018; 118 2010; 359 2019; 48 2015; 44 2021 2021; 60 133 2022; 13 2020; 49 2015 2015; 54 127 2013; 135 2016; 138 2009; 340 2008; 310 2016; 28 2018; 11 2012; 24 2014; 50 2012; 22 2016; 9 |
References_xml | – volume: 6 start-page: 6786 year: 2015 publication-title: Nat. Commun. – volume: 15 start-page: 13803 year: 2021 end-page: 13813 publication-title: ACS Nano – volume: 340 start-page: 154 year: 2009 end-page: 163 publication-title: J. Membr. Sci. – volume: 8 start-page: 1539 year: 2017 publication-title: Nat. Commun. – volume: 11 start-page: 587 year: 2019 end-page: 594 publication-title: Nat. Chem. – volume: 310 start-page: 66 year: 2008 end-page: 75 publication-title: J. Membr. Sci. – volume: 13 start-page: 266 year: 2022 publication-title: Nat. Commun. – volume: 135 start-page: 11465 year: 2013 end-page: 11468 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 13450 year: 2020 end-page: 13458 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 7258 year: 2012 publication-title: J. Mater. Chem. – volume: 121 start-page: 7280 year: 2021 end-page: 7345 publication-title: Chem. Rev. – volume: 6 start-page: 13331 year: 2018 end-page: 13339 publication-title: J. Mater. Chem. A – volume: 52 start-page: 9941 year: 2016 end-page: 9944 publication-title: Chem. Commun. – volume: 137 start-page: 7079 year: 2015 end-page: 7082 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 1551 year: 2021 end-page: 1558 publication-title: Nat. Mater. – volume: 142 start-page: 4472 year: 2020 end-page: 4480 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 8584 year: 2020 end-page: 8686 publication-title: Chem. Soc. Rev. – volume: 141 start-page: 20371 year: 2019 end-page: 20379 publication-title: J. Am. Chem. Soc. – volume: 376 start-page: 90 year: 2022 end-page: 94 publication-title: Science – volume: 50 start-page: 3699 year: 2014 end-page: 3701 publication-title: Chem. Commun. – volume: 8 start-page: 6815 year: 2020 end-page: 6825 publication-title: ACS Sustainable Chem. Eng. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 359 start-page: 126 year: 2010 end-page: 139 publication-title: J. Membr. Sci. – volume: 653 year: 2022 publication-title: J. Membr. Sci. – volume: 140 start-page: 12715 year: 2018 end-page: 12719 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 2855 year: 2016 end-page: 2873 publication-title: Adv. Mater. – volume: 120 start-page: 8814 year: 2020 end-page: 8933 publication-title: Chem. Rev. – volume: 7 start-page: 25641 year: 2019 end-page: 25649 publication-title: J. Mater. Chem. A – volume: 6 start-page: 17307 year: 2018 end-page: 17311 publication-title: J. Mater. Chem. A – volume: 11 start-page: 5306 year: 2019 end-page: 5315 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 710 year: 2012 end-page: 716 publication-title: Nat. Mater. – volume: 11 start-page: 544 year: 2018 end-page: 550 publication-title: Energy Environ. Sci. – volume: 124 start-page: 27 year: 2015 end-page: 36 publication-title: Chem. Eng. Sci. – volume: 48 start-page: 3811 year: 2019 end-page: 3841 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 2101 year: 2019 publication-title: Nat. Commun. – volume: 7 start-page: 24205 year: 2019 end-page: 24210 publication-title: J. Mater. Chem. A – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 49 start-page: 4835 year: 2020 end-page: 4866 publication-title: Chem. Soc. Rev. – volume: 48 start-page: 3903 year: 2019 end-page: 3945 publication-title: Chem. Soc. Rev. – volume: 141 start-page: 17431 year: 2019 end-page: 17440 publication-title: J. Am. Chem. Soc. – volume: 60 133 start-page: 13081 13191 year: 2021 2021 end-page: 13088 13198 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 7234 7340 year: 2015 2015 end-page: 7254 7362 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 14952 year: 2013 end-page: 14955 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 8655 year: 2018 end-page: 8769 publication-title: Chem. Rev. – volume: 9 start-page: 1863 year: 2016 end-page: 1890 publication-title: Energy Environ. Sci. – volume: 138 start-page: 2823 year: 2016 end-page: 2828 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 1649 year: 2020 end-page: 1658 publication-title: Environ. Chem. Lett. – volume: 140 start-page: 12677 year: 2018 end-page: 12681 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 5212 year: 2019 end-page: 5220 publication-title: Environ. Sci. Technol. – volume: 56 start-page: 8372 year: 2020 end-page: 8375 publication-title: Chem. Commun. – volume: 60 133 start-page: 27078 27284 year: 2021 2021 end-page: 27085 27291 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 44 start-page: 103 year: 2015 end-page: 118 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 3196 year: 2012 end-page: 3200 publication-title: Adv. Mater. |
SSID | ssj0028806 |
Score | 2.64628 |
Snippet | Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202210466 |
SubjectTerms | Aldehydes Amino Functionalization Amino groups Carbon dioxide Channels Chemical separation CO2 Separation Covalent Organic Frameworks Defect Engineering Strategy Defects Facilitated Transport Membrane Functional groups Membranes Microenvironments Monomers Nanostructure Selectivity Separation |
Title | Missing‐linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210466 https://www.proquest.com/docview/2719317267 https://www.proquest.com/docview/2703983583 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQF1j4RxQKMhJr2sR26mSsSquC1CIBlbqgyHZtCRAp6s_CxCPwjDwJd0kTWkbYEsWO4vPZ913u7jMhl8q3Trk48LSLhCeUlJ7iMgBdZmNfjwMduyxBdtDsDcXNKBytVPHn_BDlDzdcGdl-jQtc6VnjhzQUK7DBv2MMo5TIuY0JW4iK7kr-KAbKmZcXce7hKfQFa6PPGuvd1_DlKkrNzEx3h6jiA_Pskpf6Yq7r5v0Xd-N_RrBLtpcYlLZypdkjGzbdJ5vt4ui3A_LYh-kAm_b18YkBXjulVzZL-6BPKW1PQDnBVNG8jNPQbpHfRfv2Fb4HNk8KUJh2MnYKbNm-ZfTe5izjk_SQDLudh3bPW57D4D1zQHdeEFjJDAffB3wRyy1zWrsQXOcobmJctuk744Q_5kYKYSPnoJOTKtZxaJwJHT8ilXSS2mNCNaARHXGlA2eEBGdPCTG2BmEmvN5EVVIr5iFZLqZZwiSgTABaTVklF-VjEAnGNmBQkwW28XkMaDLiVcIyoSdvOV1HkhMzswTFnZTiTlqD6055d_KXTqdkC6_RkgV-jVTm04U9A4gy1-eZGn4DI03fXQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCjigUMBLXQGK7cXKsSquytEgsEhcUxa4tASJF0F448Ql8I1_CTNKE5QjHJHbkZex54xm_AdhPfetSFweedpH0ZKqUlwoVoCzzga8HgY5dHiDbD7vX8uSmUUYT0l2Ygh-iOnCjlZHv17TA6UD68Is1lK5go4HHObkpw2mYpbTeuVV1UTFIcRTP4oKREB7loS95G31--LP-D4T5HafmiqazCLpsYhFf8nAwHukD8_qLvfFffViChQkMZc1CbpZhymYrMNcqs7-twm0PZwTV2sfbO_l47TM7snnkB7vLWGuI8onaihU3OQ3rlCFerGcfsUG4fzJEw6ydE1RQydY5Z5e2IBofZmtw3WlftbreJBWDdy8Q4HlBYBU3As0fNEessNxp7RpoPUdxSK7Z0HfGSX8gjJLSRs5hJafSWMcN40zDiXWYyYaZ3QCmEZDoSKQ6cEYqtPdSKQfWENLE35uoBvVyIpLJenpJuEKgiVgrVDXYqz7jkJB7Azs1HFMZX8QIKCNRA56PevJUMHYkBTczT2i4k2q4k2b_uF09bf6l0i7Mda96Z8nZcf90C-bpPSm2wK_DzOh5bLcRsYz0Ti6Tnyfh43g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSMCFHVEoYCSuaRPbjZNj1UWsBQGVekFR7NgSINIK2gsnPoFv5EsYJ01YjnBMYkfxeOx5k5l5BjiKXW1iE3qONAF3eCyEEzPhoS7TxJWJJ0OTJcj2_OM-Px00Bt-q-HN-iPKHm10Z2X5tF_goMfUv0lBbgY3-HaU2SunPwjz33cDqdfu6JJCiqJ15fRFjjj2GvqBtdGn9Z_8fAPM7TM3sTHcF4uIL8_SSx9pkLGvq9Rd543-GsArLUxBKmrnWrMGMTtdhsVWc_bYBdxc4H2jUPt7ebYRXP5O2zvI-yH1KWkPUTrRVJK_jVKRbJHiRC_2E34O7J0EsTDoZPYVt2bqk5EbnNOPDdBP63c5t69iZHsTgPDCEd47naUEVQ-cHnRHNNDVSmgb6zkHo28Cs7xpluJswJTjXgTHYyYg4lGFDGdUwbAvm0mGqt4FIhCMyYLH0jOICvb2Y80QrizPx9SqoQLWYh2i6ml4iKhBmItLyRQUOy8coEhvcwEENJ7aNy0KEkwGrAM2EHo1yvo4oZ2amkRV3VIo7avZOOuXVzl86HcDCVbsbnZ_0znZhyd62Vs1zqzA3fp7oPYQrY7mfaeQnqoXiMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Missing%E2%80%90linker+Defects+in+Covalent+Organic+Framework+Membranes+for+Efficient+CO2+Separation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Zheyuan&rft.au=Wu%2C+Hong&rft.au=Chen%2C+Yu&rft.au=Zhu%2C+Shiyi&rft.date=2022-10-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=41&rft_id=info:doi/10.1002%2Fanie.202210466&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |