Missing‐linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation

Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 41; pp. e202210466 - n/a
Main Authors Guo, Zheyuan, Wu, Hong, Chen, Yu, Zhu, Shiyi, Jiang, Haifei, Song, Shuqing, Ren, Yanxiong, Wang, Yuhan, Liang, Xu, He, Guangwei, Li, Yonghong, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 10.10.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing‐linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2/N2, and 54 for CO2/CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations. The defect engineering strategy is developed for the bottom‐up fabrication of facilitated transport covalent organic framework membranes with missing‐linker defects for efficient CO2 separation.
AbstractList Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing-linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2 /N2 , and 54 for CO2 /CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations.Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing-linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2 /N2 , and 54 for CO2 /CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations.
Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing‐linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2/N2, and 54 for CO2/CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations. The defect engineering strategy is developed for the bottom‐up fabrication of facilitated transport covalent organic framework membranes with missing‐linker defects for efficient CO2 separation.
Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the synergy of physical and chemical microenvironments. Herein, we develop a defect engineering strategy to fabricate COF membranes for efficient CO2 separation. Abundant amino groups are in situ generated on the COF nanosheets arising from the missing‐linker defects during the reactive assembly of amine monomer and mixed aldehyde monomers. The COF nanosheets are assembled to fabricate COF membranes. Amino groups, as the CO2 facilitated transport carriers, along with ordered channels endow COF membrane with high CO2 permeances exceeding 300 GPU and excellent separation selectivity of 80 for CO2/N2, and 54 for CO2/CH4 mixed gas under humidified state. Our defect engineering strategy offers a facile approach to generating free organic functional groups in COF membranes and other organic framework membranes for diverse chemical separations.
Author Zhu, Shiyi
Jiang, Haifei
Liang, Xu
Wang, Yuhan
Li, Yonghong
Song, Shuqing
Guo, Zheyuan
Ren, Yanxiong
Jiang, Zhongyi
Wu, Hong
Chen, Yu
He, Guangwei
Author_xml – sequence: 1
  givenname: Zheyuan
  orcidid: 0000-0003-3389-1092
  surname: Guo
  fullname: Guo, Zheyuan
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 2
  givenname: Hong
  orcidid: 0000-0001-6600-4459
  surname: Wu
  fullname: Wu, Hong
  email: wuhong@tju.edu.cn
  organization: Tianjin University
– sequence: 3
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: Tianjin University
– sequence: 4
  givenname: Shiyi
  surname: Zhu
  fullname: Zhu, Shiyi
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 5
  givenname: Haifei
  surname: Jiang
  fullname: Jiang, Haifei
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 6
  givenname: Shuqing
  surname: Song
  fullname: Song, Shuqing
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 7
  givenname: Yanxiong
  surname: Ren
  fullname: Ren, Yanxiong
  organization: International Campus of Tianjin University
– sequence: 8
  givenname: Yuhan
  surname: Wang
  fullname: Wang, Yuhan
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 9
  givenname: Xu
  surname: Liang
  fullname: Liang, Xu
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 10
  givenname: Guangwei
  surname: He
  fullname: He, Guangwei
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 11
  givenname: Yonghong
  surname: Li
  fullname: Li, Yonghong
  organization: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 12
  givenname: Zhongyi
  orcidid: 0000-0002-0048-8849
  surname: Jiang
  fullname: Jiang, Zhongyi
  email: zhyjiang@tju.edu.cn
  organization: Tianjin University
BookMark eNpdkL1OwzAUhS0EEqWwMltiYUnxT2I7IyrlRyp0AEYUOeYauU2cYqdU3XgEnpEnwVURA3e590jfPTo6R2jfdx4QOqVkRAlhF9o7GDHCGCW5EHtoQAtGMy4l3093znkmVUEP0VGM88QrRcQAvdy7GJ1_-_78apxfQMBXYMH0ETuPx92HbsD3eBbekrvB10G3sO7CAt9DWwftIWLbBTyx1hm3Jcczhh9hqYPuXeeP0YHVTYST3z1Ez9eTp_FtNp3d3I0vp9mccyYySkEyw5VgigngwGxd20KlKUVKWQhijc3JKzcyz0FZm56s1GVdFsaawvIhOt_5LkP3voLYV62LBpomJexWsWKS8FLxQvGEnv1D590q-JQuUbTkVDIhE1XuqLVrYFMtg2t12FSUVNuqq23V1V_V1eXD3eRP8R861Haq
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202210466
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202210466
Genre article
GrantInformation_xml – fundername: Chemistry and Chemical Engineering Guangdong Laboratory
  funderid: 1922013
– fundername: Program of Introducing Talents of Discipline to Universities
  funderid: BP0618007
– fundername: National Natural Science Foundation of China
  funderid: U20B2023; 21878215; 21621004; 21838008
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-j3326-11e72c3862826e3e2fbbf5888896806560fcf40d3c744e8ff326f7a9b95cfc5f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 12:29:36 EDT 2025
Sun Jul 13 04:53:54 EDT 2025
Wed Jan 22 16:23:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j3326-11e72c3862826e3e2fbbf5888896806560fcf40d3c744e8ff326f7a9b95cfc5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3389-1092
0000-0001-6600-4459
0000-0002-0048-8849
PQID 2719317267
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2703983583
proquest_journals_2719317267
wiley_primary_10_1002_anie_202210466_ANIE202210466
PublicationCentury 2000
PublicationDate October 10, 2022
PublicationDateYYYYMMDD 2022-10-10
PublicationDate_xml – month: 10
  year: 2022
  text: October 10, 2022
  day: 10
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2022; 376
2017; 8
2015; 6
2021; 20
2018; 140
2019; 53
2015; 124
2020; 120
2020; 142
2019; 11
2019; 10
2016; 52
2020; 56
2020; 32
2021; 121
2019; 141
2012; 11
2022; 653
2020; 18
2020; 8
2018; 6
2020; 6
2021; 15
2021; 31
2015; 137
2020; 30
2018; 118
2010; 359
2019; 48
2015; 44
2021 2021; 60 133
2022; 13
2020; 49
2015 2015; 54 127
2013; 135
2016; 138
2009; 340
2008; 310
2016; 28
2018; 11
2012; 24
2014; 50
2012; 22
2016; 9
References_xml – volume: 6
  start-page: 6786
  year: 2015
  publication-title: Nat. Commun.
– volume: 15
  start-page: 13803
  year: 2021
  end-page: 13813
  publication-title: ACS Nano
– volume: 340
  start-page: 154
  year: 2009
  end-page: 163
  publication-title: J. Membr. Sci.
– volume: 8
  start-page: 1539
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  start-page: 587
  year: 2019
  end-page: 594
  publication-title: Nat. Chem.
– volume: 310
  start-page: 66
  year: 2008
  end-page: 75
  publication-title: J. Membr. Sci.
– volume: 13
  start-page: 266
  year: 2022
  publication-title: Nat. Commun.
– volume: 135
  start-page: 11465
  year: 2013
  end-page: 11468
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 13450
  year: 2020
  end-page: 13458
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 7258
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 121
  start-page: 7280
  year: 2021
  end-page: 7345
  publication-title: Chem. Rev.
– volume: 6
  start-page: 13331
  year: 2018
  end-page: 13339
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 9941
  year: 2016
  end-page: 9944
  publication-title: Chem. Commun.
– volume: 137
  start-page: 7079
  year: 2015
  end-page: 7082
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 1551
  year: 2021
  end-page: 1558
  publication-title: Nat. Mater.
– volume: 142
  start-page: 4472
  year: 2020
  end-page: 4480
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 8584
  year: 2020
  end-page: 8686
  publication-title: Chem. Soc. Rev.
– volume: 141
  start-page: 20371
  year: 2019
  end-page: 20379
  publication-title: J. Am. Chem. Soc.
– volume: 376
  start-page: 90
  year: 2022
  end-page: 94
  publication-title: Science
– volume: 50
  start-page: 3699
  year: 2014
  end-page: 3701
  publication-title: Chem. Commun.
– volume: 8
  start-page: 6815
  year: 2020
  end-page: 6825
  publication-title: ACS Sustainable Chem. Eng.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 359
  start-page: 126
  year: 2010
  end-page: 139
  publication-title: J. Membr. Sci.
– volume: 653
  year: 2022
  publication-title: J. Membr. Sci.
– volume: 140
  start-page: 12715
  year: 2018
  end-page: 12719
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 2855
  year: 2016
  end-page: 2873
  publication-title: Adv. Mater.
– volume: 120
  start-page: 8814
  year: 2020
  end-page: 8933
  publication-title: Chem. Rev.
– volume: 7
  start-page: 25641
  year: 2019
  end-page: 25649
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 17307
  year: 2018
  end-page: 17311
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 5306
  year: 2019
  end-page: 5315
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 710
  year: 2012
  end-page: 716
  publication-title: Nat. Mater.
– volume: 11
  start-page: 544
  year: 2018
  end-page: 550
  publication-title: Energy Environ. Sci.
– volume: 124
  start-page: 27
  year: 2015
  end-page: 36
  publication-title: Chem. Eng. Sci.
– volume: 48
  start-page: 3811
  year: 2019
  end-page: 3841
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 2101
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  start-page: 24205
  year: 2019
  end-page: 24210
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 49
  start-page: 4835
  year: 2020
  end-page: 4866
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 3903
  year: 2019
  end-page: 3945
  publication-title: Chem. Soc. Rev.
– volume: 141
  start-page: 17431
  year: 2019
  end-page: 17440
  publication-title: J. Am. Chem. Soc.
– volume: 60 133
  start-page: 13081 13191
  year: 2021 2021
  end-page: 13088 13198
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 7234 7340
  year: 2015 2015
  end-page: 7254 7362
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 14952
  year: 2013
  end-page: 14955
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 8655
  year: 2018
  end-page: 8769
  publication-title: Chem. Rev.
– volume: 9
  start-page: 1863
  year: 2016
  end-page: 1890
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 2823
  year: 2016
  end-page: 2828
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 1649
  year: 2020
  end-page: 1658
  publication-title: Environ. Chem. Lett.
– volume: 140
  start-page: 12677
  year: 2018
  end-page: 12681
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 5212
  year: 2019
  end-page: 5220
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 8372
  year: 2020
  end-page: 8375
  publication-title: Chem. Commun.
– volume: 60 133
  start-page: 27078 27284
  year: 2021 2021
  end-page: 27085 27291
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 44
  start-page: 103
  year: 2015
  end-page: 118
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 3196
  year: 2012
  end-page: 3200
  publication-title: Adv. Mater.
SSID ssj0028806
Score 2.64628
Snippet Covalent organic framework (COF) membranes with tunable ordered channels and free organic groups hold great promise in molecular separations owing to the...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202210466
SubjectTerms Aldehydes
Amino Functionalization
Amino groups
Carbon dioxide
Channels
Chemical separation
CO2 Separation
Covalent Organic Frameworks
Defect Engineering Strategy
Defects
Facilitated Transport Membrane
Functional groups
Membranes
Microenvironments
Monomers
Nanostructure
Selectivity
Separation
Title Missing‐linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210466
https://www.proquest.com/docview/2719317267
https://www.proquest.com/docview/2703983583
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQF1j4RxQKMhJr2sR26mSsSquC1CIBlbqgyHZtCRAp6s_CxCPwjDwJd0kTWkbYEsWO4vPZ913u7jMhl8q3Trk48LSLhCeUlJ7iMgBdZmNfjwMduyxBdtDsDcXNKBytVPHn_BDlDzdcGdl-jQtc6VnjhzQUK7DBv2MMo5TIuY0JW4iK7kr-KAbKmZcXce7hKfQFa6PPGuvd1_DlKkrNzEx3h6jiA_Pskpf6Yq7r5v0Xd-N_RrBLtpcYlLZypdkjGzbdJ5vt4ui3A_LYh-kAm_b18YkBXjulVzZL-6BPKW1PQDnBVNG8jNPQbpHfRfv2Fb4HNk8KUJh2MnYKbNm-ZfTe5izjk_SQDLudh3bPW57D4D1zQHdeEFjJDAffB3wRyy1zWrsQXOcobmJctuk744Q_5kYKYSPnoJOTKtZxaJwJHT8ilXSS2mNCNaARHXGlA2eEBGdPCTG2BmEmvN5EVVIr5iFZLqZZwiSgTABaTVklF-VjEAnGNmBQkwW28XkMaDLiVcIyoSdvOV1HkhMzswTFnZTiTlqD6055d_KXTqdkC6_RkgV-jVTm04U9A4gy1-eZGn4DI03fXQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCjigUMBLXQGK7cXKsSquytEgsEhcUxa4tASJF0F448Ql8I1_CTNKE5QjHJHbkZex54xm_AdhPfetSFweedpH0ZKqUlwoVoCzzga8HgY5dHiDbD7vX8uSmUUYT0l2Ygh-iOnCjlZHv17TA6UD68Is1lK5go4HHObkpw2mYpbTeuVV1UTFIcRTP4oKREB7loS95G31--LP-D4T5HafmiqazCLpsYhFf8nAwHukD8_qLvfFffViChQkMZc1CbpZhymYrMNcqs7-twm0PZwTV2sfbO_l47TM7snnkB7vLWGuI8onaihU3OQ3rlCFerGcfsUG4fzJEw6ydE1RQydY5Z5e2IBofZmtw3WlftbreJBWDdy8Q4HlBYBU3As0fNEessNxp7RpoPUdxSK7Z0HfGSX8gjJLSRs5hJafSWMcN40zDiXWYyYaZ3QCmEZDoSKQ6cEYqtPdSKQfWENLE35uoBvVyIpLJenpJuEKgiVgrVDXYqz7jkJB7Azs1HFMZX8QIKCNRA56PevJUMHYkBTczT2i4k2q4k2b_uF09bf6l0i7Mda96Z8nZcf90C-bpPSm2wK_DzOh5bLcRsYz0Ti6Tnyfh43g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSMCFHVEoYCSuaRPbjZNj1UWsBQGVekFR7NgSINIK2gsnPoFv5EsYJ01YjnBMYkfxeOx5k5l5BjiKXW1iE3qONAF3eCyEEzPhoS7TxJWJJ0OTJcj2_OM-Px00Bt-q-HN-iPKHm10Z2X5tF_goMfUv0lBbgY3-HaU2SunPwjz33cDqdfu6JJCiqJ15fRFjjj2GvqBtdGn9Z_8fAPM7TM3sTHcF4uIL8_SSx9pkLGvq9Rd543-GsArLUxBKmrnWrMGMTtdhsVWc_bYBdxc4H2jUPt7ebYRXP5O2zvI-yH1KWkPUTrRVJK_jVKRbJHiRC_2E34O7J0EsTDoZPYVt2bqk5EbnNOPDdBP63c5t69iZHsTgPDCEd47naUEVQ-cHnRHNNDVSmgb6zkHo28Cs7xpluJswJTjXgTHYyYg4lGFDGdUwbAvm0mGqt4FIhCMyYLH0jOICvb2Y80QrizPx9SqoQLWYh2i6ml4iKhBmItLyRQUOy8coEhvcwEENJ7aNy0KEkwGrAM2EHo1yvo4oZ2amkRV3VIo7avZOOuXVzl86HcDCVbsbnZ_0znZhyd62Vs1zqzA3fp7oPYQrY7mfaeQnqoXiMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Missing%E2%80%90linker+Defects+in+Covalent+Organic+Framework+Membranes+for+Efficient+CO2+Separation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Zheyuan&rft.au=Wu%2C+Hong&rft.au=Chen%2C+Yu&rft.au=Zhu%2C+Shiyi&rft.date=2022-10-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=41&rft_id=info:doi/10.1002%2Fanie.202210466&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon