In Situ Periodic Regeneration of Catalyst during CO2 Electroreduction to C2+ Products

Developing electrocatalytic reactions with high‐efficiency can make important contributions to carbon neutrality. However, poor long‐term stability of catalysts is a bottleneck for its practical application. Herein, an “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to give l...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 37; pp. e202210375 - n/a
Main Authors Xu, Liang, Ma, Xiaodong, Wu, Limin, Tan, Xingxing, Song, Xinning, Zhu, Qinggong, Chen, Chunjun, Qian, Qingli, Liu, Zhimin, Sun, Xiaofu, Liu, Shoujie, Han, Buxing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 12.09.2022
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing electrocatalytic reactions with high‐efficiency can make important contributions to carbon neutrality. However, poor long‐term stability of catalysts is a bottleneck for its practical application. Herein, an “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to give long‐term high efficiency of CO2 electroreduction to generate C2+ products over Cu catalyst by applying a positive potential pulse for a short time periodically in the halide‐containing electrolyte. The high Faradaic efficiency (81.2 %) and current density (22.6 mA cm−2) could be maintained completely at least 36 h, while the activity and selectivity decreased continuously without using the PR‐C method. Control experiments and operando characterization demonstrated that the surface structure and oxidation state of Cu could be recovered periodically by the PR‐C method, which was beneficial for CO2 activation and C−C coupling. An “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to maintain the high efficiency of CO2 electroreduction towards C2+ products over a copper catalyst. A positive potential pulse is applied periodically for a short time in the halide‐containing electrolyte. As a result the surface structure and oxidation state of the Cu could be recovered periodically by the PR‐C method.
AbstractList Developing electrocatalytic reactions with high-efficiency can make important contributions to carbon neutrality. However, poor long-term stability of catalysts is a bottleneck for its practical application. Herein, an "in situ periodic regeneration of catalyst (PR-C)" strategy is proposed to give long-term high efficiency of CO2 electroreduction to generate C2+ products over Cu catalyst by applying a positive potential pulse for a short time periodically in the halide-containing electrolyte. The high Faradaic efficiency (81.2 %) and current density (22.6 mA cm-2 ) could be maintained completely at least 36 h, while the activity and selectivity decreased continuously without using the PR-C method. Control experiments and operando characterization demonstrated that the surface structure and oxidation state of Cu could be recovered periodically by the PR-C method, which was beneficial for CO2 activation and C-C coupling.Developing electrocatalytic reactions with high-efficiency can make important contributions to carbon neutrality. However, poor long-term stability of catalysts is a bottleneck for its practical application. Herein, an "in situ periodic regeneration of catalyst (PR-C)" strategy is proposed to give long-term high efficiency of CO2 electroreduction to generate C2+ products over Cu catalyst by applying a positive potential pulse for a short time periodically in the halide-containing electrolyte. The high Faradaic efficiency (81.2 %) and current density (22.6 mA cm-2 ) could be maintained completely at least 36 h, while the activity and selectivity decreased continuously without using the PR-C method. Control experiments and operando characterization demonstrated that the surface structure and oxidation state of Cu could be recovered periodically by the PR-C method, which was beneficial for CO2 activation and C-C coupling.
Developing electrocatalytic reactions with high‐efficiency can make important contributions to carbon neutrality. However, poor long‐term stability of catalysts is a bottleneck for its practical application. Herein, an “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to give long‐term high efficiency of CO2 electroreduction to generate C2+ products over Cu catalyst by applying a positive potential pulse for a short time periodically in the halide‐containing electrolyte. The high Faradaic efficiency (81.2 %) and current density (22.6 mA cm−2) could be maintained completely at least 36 h, while the activity and selectivity decreased continuously without using the PR‐C method. Control experiments and operando characterization demonstrated that the surface structure and oxidation state of Cu could be recovered periodically by the PR‐C method, which was beneficial for CO2 activation and C−C coupling. An “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to maintain the high efficiency of CO2 electroreduction towards C2+ products over a copper catalyst. A positive potential pulse is applied periodically for a short time in the halide‐containing electrolyte. As a result the surface structure and oxidation state of the Cu could be recovered periodically by the PR‐C method.
Developing electrocatalytic reactions with high‐efficiency can make important contributions to carbon neutrality. However, poor long‐term stability of catalysts is a bottleneck for its practical application. Herein, an “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to give long‐term high efficiency of CO2 electroreduction to generate C2+ products over Cu catalyst by applying a positive potential pulse for a short time periodically in the halide‐containing electrolyte. The high Faradaic efficiency (81.2 %) and current density (22.6 mA cm−2) could be maintained completely at least 36 h, while the activity and selectivity decreased continuously without using the PR‐C method. Control experiments and operando characterization demonstrated that the surface structure and oxidation state of Cu could be recovered periodically by the PR‐C method, which was beneficial for CO2 activation and C−C coupling.
Author Zhu, Qinggong
Xu, Liang
Ma, Xiaodong
Song, Xinning
Chen, Chunjun
Liu, Zhimin
Tan, Xingxing
Sun, Xiaofu
Han, Buxing
Qian, Qingli
Wu, Limin
Liu, Shoujie
Author_xml – sequence: 1
  givenname: Liang
  surname: Xu
  fullname: Xu, Liang
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Xiaodong
  surname: Ma
  fullname: Ma, Xiaodong
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Limin
  surname: Wu
  fullname: Wu, Limin
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Xingxing
  surname: Tan
  fullname: Tan, Xingxing
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Xinning
  surname: Song
  fullname: Song, Xinning
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Qinggong
  surname: Zhu
  fullname: Zhu, Qinggong
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Chunjun
  surname: Chen
  fullname: Chen, Chunjun
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Qingli
  surname: Qian
  fullname: Qian, Qingli
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Zhimin
  surname: Liu
  fullname: Liu, Zhimin
  organization: University of Chinese Academy of Sciences
– sequence: 10
  givenname: Xiaofu
  surname: Sun
  fullname: Sun, Xiaofu
  email: sunxiaofu@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 11
  givenname: Shoujie
  surname: Liu
  fullname: Liu, Shoujie
  email: jiesliu@ahnu.edu.cn
  organization: Chemistry and Chemical Engineering of Guangdong Laboratory
– sequence: 12
  givenname: Buxing
  orcidid: 0000-0003-0440-809X
  surname: Han
  fullname: Han, Buxing
  email: hanbx@iccas.ac.cn
  organization: East China Normal University
BookMark eNpd0M9LwzAUB_AgE9ymV88BL4JU86Np2uMoUwdDh7pzSNPXkdElM2mR_fd2Tjx4ej_48Hh8J2jkvAOErim5p4SwB-0s3DPCGCVcijM0poLRhEvJR0Ofcp7IXNALNIlxO_g8J9kYrRcOv9uuxysI1tfW4DfYgIOgO-sd9g0udafbQ-xw3QfrNrh8ZXjegumCD1D35sd1HpfsDq-CP27iJTpvdBvh6rdO0fpx_lE-J8vXp0U5WyZbzplIBFBhRCWEKQjlTBNaaF6TomKGNKIhualZqlNWZ41OdQ7cSM5FVWUVJU1DBZ-i29PdffCfPcRO7Ww00Lbage-jYlmRpjTLORnozT-69X1ww3eKSVJIKjJJB1Wc1Jdt4aD2we50OChK1DFidYxY_UWsZi-L-d_EvwEWEXI1
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202210375
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202210375
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22002172; 21890761; 22121002; 21733011
– fundername: Beijing Natural Science Foundation
  funderid: J210020
– fundername: National Key Research and Development Program of China
  funderid: 2020YFA0710203; 2017YFA0403102
– fundername: the Research Funds of Happiness Flower ECNU
  funderid: 2020ST2203
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-j3325-5e15c5b55c90132a019a3d09b2c0f5f08cd24a42d6fa4a8e3c7335bb6b10ff153
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:34:07 EDT 2025
Sun Jul 13 04:19:22 EDT 2025
Wed Jan 22 16:23:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j3325-5e15c5b55c90132a019a3d09b2c0f5f08cd24a42d6fa4a8e3c7335bb6b10ff153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0440-809X
PQID 2709715671
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2694416830
proquest_journals_2709715671
wiley_primary_10_1002_anie_202210375_ANIE202210375
PublicationCentury 2000
PublicationDate September 12, 2022
PublicationDateYYYYMMDD 2022-09-12
PublicationDate_xml – month: 09
  year: 2022
  text: September 12, 2022
  day: 12
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2017; 7
2018; 165
2021; 6
2019; 4
2017; 1
2021; 5
2021; 4
2018; 140
2021; 3
2006; 51
2019; 2
2020; 142
2019; 10
2016; 529
2020 2020; 59 132
2008; 54
2020; 11
2021; 143
2020; 10
2021; 50
2019; 141
2017; 355
2017; 114
2019; 364
2019 2019; 58 131
2021; 14
2016; 6
2022 2022; 61 134
2020; 5
2018; 3
2021; 12
2021; 33
2021; 11
2021 2021; 60 133
2020; 49
2013; 111
2022; 13
2019; 575
2005; 109
2019; 119
2018; 10
1998; 5
References_xml – volume: 14
  start-page: 3717
  year: 2021
  end-page: 3756
  publication-title: Energy Environ. Sci.
– volume: 60 133
  start-page: 17254 17394
  year: 2021 2021
  end-page: 17267 17407
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 119
  start-page: 7610
  year: 2019
  end-page: 7672
  publication-title: Chem. Rev.
– volume: 2
  start-page: 198
  year: 2019
  end-page: 210
  publication-title: Nat. Catal.
– volume: 3
  start-page: 1729
  year: 2021
  end-page: 1737
  publication-title: ACS Mater. Lett.
– volume: 54
  start-page: 793
  year: 2008
  end-page: 800
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 794
  year: 2017
  end-page: 805
  publication-title: Joule
– volume: 142
  start-page: 6878
  year: 2020
  end-page: 6883
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 5112
  year: 2017
  end-page: 5120
  publication-title: ACS Catal.
– volume: 142
  start-page: 6400
  year: 2020
  end-page: 6408
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 11786
  year: 2021
  end-page: 11792
  publication-title: ACS Catal.
– volume: 4
  start-page: 732
  year: 2019
  end-page: 745
  publication-title: Nat. Energy
– volume: 529
  start-page: 68
  year: 2016
  end-page: 71
  publication-title: Nature
– volume: 59 132
  start-page: 8262 8339
  year: 2020 2020
  end-page: 8269 8346
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 1966
  year: 2019
  end-page: 1973
  publication-title: J. Mater. Chem. C
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 6
  start-page: 437
  year: 2021
  end-page: 444
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 257
  year: 1998
  end-page: 261
  publication-title: Surf. Sci. Spectra
– volume: 114
  start-page: 6685
  year: 2017
  end-page: 6688
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 140
  start-page: 5791
  year: 2018
  end-page: 5797
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3622
  year: 2020
  publication-title: Nat. Commun.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 4
  start-page: 479
  year: 2021
  end-page: 487
  publication-title: Nat. Catal.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 2136
  year: 2016
  end-page: 2144
  publication-title: ACS Catal.
– volume: 2
  start-page: 648
  year: 2019
  end-page: 658
  publication-title: Nat. Catal.
– volume: 50
  start-page: 12897
  year: 2021
  end-page: 12914
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 5938
  year: 2021
  end-page: 5943
  publication-title: Chem. Sci.
– volume: 10
  start-page: 5814
  year: 2019
  publication-title: Nat. Commun.
– volume: 10
  start-page: 3851
  year: 2019
  publication-title: Nat. Commun.
– volume: 111
  start-page: 771
  year: 2013
  end-page: 778
  publication-title: Electrochim. Acta
– volume: 109
  start-page: 17372
  year: 2005
  end-page: 17385
  publication-title: J. Phys. Chem. B
– volume: 58 131
  start-page: 17047 17203
  year: 2019 2019
  end-page: 17053 17209
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 165
  start-page: J3059
  year: 2018
  end-page: J3068
  publication-title: J. Electrochem. Soc.
– volume: 14
  start-page: 1121
  year: 2021
  end-page: 1139
  publication-title: Energy Environ. Sci.
– volume: 142
  start-page: 11417
  year: 2020
  end-page: 11427
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1987
  year: 2021
  end-page: 2026
  publication-title: Joule
– volume: 142
  start-page: 2857
  year: 2020
  end-page: 2867
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 478
  year: 2020
  end-page: 486
  publication-title: Nat. Energy
– volume: 10
  start-page: 892
  year: 2019
  publication-title: Nat. Commun.
– volume: 141
  start-page: 18704
  year: 2019
  end-page: 18714
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 317
  year: 2020
  end-page: 325
  publication-title: Nat. Energy
– volume: 13
  start-page: 1877
  year: 2022
  publication-title: Nat. Commun.
– volume: 51
  start-page: 3814
  year: 2006
  end-page: 3819
  publication-title: Electrochim. Acta
– volume: 49
  start-page: 6632
  year: 2020
  end-page: 6665
  publication-title: Chem. Soc. Rev.
– volume: 575
  start-page: 639
  year: 2019
  end-page: 642
  publication-title: Nature
– volume: 143
  start-page: 7578
  year: 2021
  end-page: 7587
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 7941
  year: 2021
  end-page: 8002
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 3765
  year: 2021
  publication-title: Nat. Commun.
– volume: 364
  start-page: 1091
  year: 2019
  end-page: 1094
  publication-title: Science
– volume: 10
  start-page: 974
  year: 2018
  end-page: 980
  publication-title: Nat. Chem.
– volume: 3
  start-page: 140
  year: 2018
  end-page: 147
  publication-title: Nat. Energy
– volume: 10
  start-page: 8632
  year: 2020
  end-page: 8639
  publication-title: ACS Catal.
– volume: 10
  start-page: 3919
  year: 2019
  publication-title: Nat. Commun.
SSID ssj0028806
Score 2.5994196
Snippet Developing electrocatalytic reactions with high‐efficiency can make important contributions to carbon neutrality. However, poor long‐term stability of...
Developing electrocatalytic reactions with high-efficiency can make important contributions to carbon neutrality. However, poor long-term stability of...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202210375
SubjectTerms C2+ Products
Carbon Dioxide
Catalysts
Efficiency
Electrocatalysis
Electrowinning
Green Chemistry
in Situ Regeneration of Catalyst
Oxidation
Regeneration
Selectivity
Surface structure
Valence
Title In Situ Periodic Regeneration of Catalyst during CO2 Electroreduction to C2+ Products
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210375
https://www.proquest.com/docview/2709715671
https://www.proquest.com/docview/2694416830
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754F-eNCL5Jt-7k0u5RyoYTnKIO9laStBEVWtm6B_315jRbvTzqW0sTaE_OSb8m_b6PkHPNRRaDtkGkbBRw7So9NkIFYSY0YzLUUHsR3Izk1ZhfT8TkG4vf60M0C25YGfV8jQWu9KzzJRqKDGz3fQeATDdkmeMPW4iK7hv9KHDJ6elFjAXoQr9UbQyh87P7D3z5HaXWr5nBJlHLG_R_l7y255Vum49f2o3_eYItsrHAoPTSJ802WcmLHbKWLK3fdsl4WNCH52pO71x-ltmzoff5U61PjcNIS0sTXPV5n1XU0xxpcgu07x11pigGW7erSprABb3zorKzPTIe9B-Tq2DhvxC8MAYiEHlXGKGFMD3ckVEODSqWhT0NJrTChrHJgCsOmbSKqzhnJmJMaC3diFvrptJ9slqURX5AKOqadrMMImmAa2kdruMWwFjNVdchwBY5XsY_XRTRLIUIBa6EjLotctZcdqHAPQ1V5OXctZE9B-hkzMIWgTrY6ZuX6Ui9IDOkGOa0CXN6ORr2m7PDv3Q6Iut4HNRGEsdktZrO8xMHTSp9WqffJ0Zu2jo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD4h8IAvire4gjom-mQK7ZlLuw8-kLJkV2AlyCa81Zlph6BJS9huCPwr_4q_yDnttoqPJjz42HaadOZc-s3lfB_AOyNknqBxQaxdHAjjIz2xUgdhLg3nKjTYaBEcTdV4Jj6dybMV-NHVwrT8EP2CG0VGk68pwGlBeuc3ayiVYPsJHiKVunXnKg-Km2s_a5t_nOx5E79H3B-dpuNgKSwQfOMcZSCLSFpppLRD2mrQHuZonodDgzZ00oWJzVFogblyWuik4DbmXBqjfFeci0gowmf9NZIRJ7r-vZOesQp9OLQFTZwHpHvf8USGuHP3e-8g2j9xcfNj238EP7shac-zfN9e1Gbb3v7FFvlfjdkGPFzCbLbbxsVjWCnKJ7Cedup2T2E2KdmXi3rBjn0IVvmFZSfFeUPBTZ7KKsdSWti6mdesreRk6Wdko1Y06Ir4bpt2dcVS_MCOW97c-TOY3UuvnsNqWZXFC2BE3RrlOcbKojDKeegqHKJ1RujIg9wBbHUGz5Z5Yp5hTBxeUsXRAN72j_1Q0LaNLotq4duoocesKuHhALCxbnbZMpFkLec0ZmTWrDdrtjudjPqrl__y0htYH58eHWaHk-nBJjyg-0Gjm7EFq_XVonjlkVhtXje-z-DrfTvOLycKN7M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qigRseKMGCh0kWCG39p2HnUUXlZOooRCiQqTuzDw8qCDZVeMIla_iV_ijznhi07JE6oKl7bHkuY_xmcc9B-C1YtxkqGyUSptGTLlMzzSXUWy4olTEClstgg8zcbhg7074yQb86mphAj9Ev-DmM6Mdr32Cnxm794c01Fdgu_kdoq90645VHpUXP9ykbbk_HTkPv0GcjD_nh9FaVyD6RinyiJcJ11xxrod-p0E6lCOpiYcKdWy5jTNtkEmGRljJZFZSnVLKlRKuJ9YmXifCDfq3mIiHXixidNwTVqHLhlDPRGnkZe87msgY965_7zVAexUWt_-1yX343VkkHGf5vrtq1K7--RdZ5P9ksgdwbw2yyUHIioewUVaP4E7eads9hsW0Ip9OmxWZuwSszakmx-XXloDbxympLcn9stbFsiGhjpPkH5GMg2TQuWe7bds1NcnxLZkH1tzlE1jcSK-ewmZVV-UWEE_cmhiDqdDIlLAOuDKLqK1iMnEQdwDbnb-L9SixLDD1DF5cpMkAXvWPnSn8po2synrl2oihQ6wio_EAsHVucRZ4SIrAOI2Fd2vRu7U4mE3H_dWzf3lpB27PR5Pi_XR29Bzu-ttRK5qxDZvN-ap84WBYo162kU_gy03HzSUctTZi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Periodic+Regeneration+of+Catalyst+during+CO2+Electroreduction+to+C2%2B+Products&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Liang&rft.au=Ma%2C+Xiaodong&rft.au=Wu%2C+Limin&rft.au=Tan%2C+Xingxing&rft.date=2022-09-12&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=37&rft_id=info:doi/10.1002%2Fanie.202210375&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon