In Situ Periodic Regeneration of Catalyst during CO2 Electroreduction to C2+ Products
Developing electrocatalytic reactions with high‐efficiency can make important contributions to carbon neutrality. However, poor long‐term stability of catalysts is a bottleneck for its practical application. Herein, an “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to give l...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 37; pp. e202210375 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
12.09.2022
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing electrocatalytic reactions with high‐efficiency can make important contributions to carbon neutrality. However, poor long‐term stability of catalysts is a bottleneck for its practical application. Herein, an “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to give long‐term high efficiency of CO2 electroreduction to generate C2+ products over Cu catalyst by applying a positive potential pulse for a short time periodically in the halide‐containing electrolyte. The high Faradaic efficiency (81.2 %) and current density (22.6 mA cm−2) could be maintained completely at least 36 h, while the activity and selectivity decreased continuously without using the PR‐C method. Control experiments and operando characterization demonstrated that the surface structure and oxidation state of Cu could be recovered periodically by the PR‐C method, which was beneficial for CO2 activation and C−C coupling.
An “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to maintain the high efficiency of CO2 electroreduction towards C2+ products over a copper catalyst. A positive potential pulse is applied periodically for a short time in the halide‐containing electrolyte. As a result the surface structure and oxidation state of the Cu could be recovered periodically by the PR‐C method. |
---|---|
AbstractList | Developing electrocatalytic reactions with high-efficiency can make important contributions to carbon neutrality. However, poor long-term stability of catalysts is a bottleneck for its practical application. Herein, an "in situ periodic regeneration of catalyst (PR-C)" strategy is proposed to give long-term high efficiency of CO2 electroreduction to generate C2+ products over Cu catalyst by applying a positive potential pulse for a short time periodically in the halide-containing electrolyte. The high Faradaic efficiency (81.2 %) and current density (22.6 mA cm-2 ) could be maintained completely at least 36 h, while the activity and selectivity decreased continuously without using the PR-C method. Control experiments and operando characterization demonstrated that the surface structure and oxidation state of Cu could be recovered periodically by the PR-C method, which was beneficial for CO2 activation and C-C coupling.Developing electrocatalytic reactions with high-efficiency can make important contributions to carbon neutrality. However, poor long-term stability of catalysts is a bottleneck for its practical application. Herein, an "in situ periodic regeneration of catalyst (PR-C)" strategy is proposed to give long-term high efficiency of CO2 electroreduction to generate C2+ products over Cu catalyst by applying a positive potential pulse for a short time periodically in the halide-containing electrolyte. The high Faradaic efficiency (81.2 %) and current density (22.6 mA cm-2 ) could be maintained completely at least 36 h, while the activity and selectivity decreased continuously without using the PR-C method. Control experiments and operando characterization demonstrated that the surface structure and oxidation state of Cu could be recovered periodically by the PR-C method, which was beneficial for CO2 activation and C-C coupling. Developing electrocatalytic reactions with high‐efficiency can make important contributions to carbon neutrality. However, poor long‐term stability of catalysts is a bottleneck for its practical application. Herein, an “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to give long‐term high efficiency of CO2 electroreduction to generate C2+ products over Cu catalyst by applying a positive potential pulse for a short time periodically in the halide‐containing electrolyte. The high Faradaic efficiency (81.2 %) and current density (22.6 mA cm−2) could be maintained completely at least 36 h, while the activity and selectivity decreased continuously without using the PR‐C method. Control experiments and operando characterization demonstrated that the surface structure and oxidation state of Cu could be recovered periodically by the PR‐C method, which was beneficial for CO2 activation and C−C coupling. An “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to maintain the high efficiency of CO2 electroreduction towards C2+ products over a copper catalyst. A positive potential pulse is applied periodically for a short time in the halide‐containing electrolyte. As a result the surface structure and oxidation state of the Cu could be recovered periodically by the PR‐C method. Developing electrocatalytic reactions with high‐efficiency can make important contributions to carbon neutrality. However, poor long‐term stability of catalysts is a bottleneck for its practical application. Herein, an “in situ periodic regeneration of catalyst (PR‐C)” strategy is proposed to give long‐term high efficiency of CO2 electroreduction to generate C2+ products over Cu catalyst by applying a positive potential pulse for a short time periodically in the halide‐containing electrolyte. The high Faradaic efficiency (81.2 %) and current density (22.6 mA cm−2) could be maintained completely at least 36 h, while the activity and selectivity decreased continuously without using the PR‐C method. Control experiments and operando characterization demonstrated that the surface structure and oxidation state of Cu could be recovered periodically by the PR‐C method, which was beneficial for CO2 activation and C−C coupling. |
Author | Zhu, Qinggong Xu, Liang Ma, Xiaodong Song, Xinning Chen, Chunjun Liu, Zhimin Tan, Xingxing Sun, Xiaofu Han, Buxing Qian, Qingli Wu, Limin Liu, Shoujie |
Author_xml | – sequence: 1 givenname: Liang surname: Xu fullname: Xu, Liang organization: Chinese Academy of Sciences – sequence: 2 givenname: Xiaodong surname: Ma fullname: Ma, Xiaodong organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Limin surname: Wu fullname: Wu, Limin organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Xingxing surname: Tan fullname: Tan, Xingxing organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Xinning surname: Song fullname: Song, Xinning organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Qinggong surname: Zhu fullname: Zhu, Qinggong organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Chunjun surname: Chen fullname: Chen, Chunjun organization: Chinese Academy of Sciences – sequence: 8 givenname: Qingli surname: Qian fullname: Qian, Qingli organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Zhimin surname: Liu fullname: Liu, Zhimin organization: University of Chinese Academy of Sciences – sequence: 10 givenname: Xiaofu surname: Sun fullname: Sun, Xiaofu email: sunxiaofu@iccas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 11 givenname: Shoujie surname: Liu fullname: Liu, Shoujie email: jiesliu@ahnu.edu.cn organization: Chemistry and Chemical Engineering of Guangdong Laboratory – sequence: 12 givenname: Buxing orcidid: 0000-0003-0440-809X surname: Han fullname: Han, Buxing email: hanbx@iccas.ac.cn organization: East China Normal University |
BookMark | eNpd0M9LwzAUB_AgE9ymV88BL4JU86Np2uMoUwdDh7pzSNPXkdElM2mR_fd2Tjx4ej_48Hh8J2jkvAOErim5p4SwB-0s3DPCGCVcijM0poLRhEvJR0Ofcp7IXNALNIlxO_g8J9kYrRcOv9uuxysI1tfW4DfYgIOgO-sd9g0udafbQ-xw3QfrNrh8ZXjegumCD1D35sd1HpfsDq-CP27iJTpvdBvh6rdO0fpx_lE-J8vXp0U5WyZbzplIBFBhRCWEKQjlTBNaaF6TomKGNKIhualZqlNWZ41OdQ7cSM5FVWUVJU1DBZ-i29PdffCfPcRO7Ww00Lbage-jYlmRpjTLORnozT-69X1ww3eKSVJIKjJJB1Wc1Jdt4aD2we50OChK1DFidYxY_UWsZi-L-d_EvwEWEXI1 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202210375 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202210375 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22002172; 21890761; 22121002; 21733011 – fundername: Beijing Natural Science Foundation funderid: J210020 – fundername: National Key Research and Development Program of China funderid: 2020YFA0710203; 2017YFA0403102 – fundername: the Research Funds of Happiness Flower ECNU funderid: 2020ST2203 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-j3325-5e15c5b55c90132a019a3d09b2c0f5f08cd24a42d6fa4a8e3c7335bb6b10ff153 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:34:07 EDT 2025 Sun Jul 13 04:19:22 EDT 2025 Wed Jan 22 16:23:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j3325-5e15c5b55c90132a019a3d09b2c0f5f08cd24a42d6fa4a8e3c7335bb6b10ff153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0440-809X |
PQID | 2709715671 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2694416830 proquest_journals_2709715671 wiley_primary_10_1002_anie_202210375_ANIE202210375 |
PublicationCentury | 2000 |
PublicationDate | September 12, 2022 |
PublicationDateYYYYMMDD | 2022-09-12 |
PublicationDate_xml | – month: 09 year: 2022 text: September 12, 2022 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2017; 7 2018; 165 2021; 6 2019; 4 2017; 1 2021; 5 2021; 4 2018; 140 2021; 3 2006; 51 2019; 2 2020; 142 2019; 10 2016; 529 2020 2020; 59 132 2008; 54 2020; 11 2021; 143 2020; 10 2021; 50 2019; 141 2017; 355 2017; 114 2019; 364 2019 2019; 58 131 2021; 14 2016; 6 2022 2022; 61 134 2020; 5 2018; 3 2021; 12 2021; 33 2021; 11 2021 2021; 60 133 2020; 49 2013; 111 2022; 13 2019; 575 2005; 109 2019; 119 2018; 10 1998; 5 |
References_xml | – volume: 14 start-page: 3717 year: 2021 end-page: 3756 publication-title: Energy Environ. Sci. – volume: 60 133 start-page: 17254 17394 year: 2021 2021 end-page: 17267 17407 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 7610 year: 2019 end-page: 7672 publication-title: Chem. Rev. – volume: 2 start-page: 198 year: 2019 end-page: 210 publication-title: Nat. Catal. – volume: 3 start-page: 1729 year: 2021 end-page: 1737 publication-title: ACS Mater. Lett. – volume: 54 start-page: 793 year: 2008 end-page: 800 publication-title: Electrochim. Acta – volume: 1 start-page: 794 year: 2017 end-page: 805 publication-title: Joule – volume: 142 start-page: 6878 year: 2020 end-page: 6883 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 5112 year: 2017 end-page: 5120 publication-title: ACS Catal. – volume: 142 start-page: 6400 year: 2020 end-page: 6408 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 11786 year: 2021 end-page: 11792 publication-title: ACS Catal. – volume: 4 start-page: 732 year: 2019 end-page: 745 publication-title: Nat. Energy – volume: 529 start-page: 68 year: 2016 end-page: 71 publication-title: Nature – volume: 59 132 start-page: 8262 8339 year: 2020 2020 end-page: 8269 8346 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1966 year: 2019 end-page: 1973 publication-title: J. Mater. Chem. C – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 6 start-page: 437 year: 2021 end-page: 444 publication-title: ACS Energy Lett. – volume: 5 start-page: 257 year: 1998 end-page: 261 publication-title: Surf. Sci. Spectra – volume: 114 start-page: 6685 year: 2017 end-page: 6688 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 140 start-page: 5791 year: 2018 end-page: 5797 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3622 year: 2020 publication-title: Nat. Commun. – volume: 355 year: 2017 publication-title: Science – volume: 4 start-page: 479 year: 2021 end-page: 487 publication-title: Nat. Catal. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 2136 year: 2016 end-page: 2144 publication-title: ACS Catal. – volume: 2 start-page: 648 year: 2019 end-page: 658 publication-title: Nat. Catal. – volume: 50 start-page: 12897 year: 2021 end-page: 12914 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 5938 year: 2021 end-page: 5943 publication-title: Chem. Sci. – volume: 10 start-page: 5814 year: 2019 publication-title: Nat. Commun. – volume: 10 start-page: 3851 year: 2019 publication-title: Nat. Commun. – volume: 111 start-page: 771 year: 2013 end-page: 778 publication-title: Electrochim. Acta – volume: 109 start-page: 17372 year: 2005 end-page: 17385 publication-title: J. Phys. Chem. B – volume: 58 131 start-page: 17047 17203 year: 2019 2019 end-page: 17053 17209 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 165 start-page: J3059 year: 2018 end-page: J3068 publication-title: J. Electrochem. Soc. – volume: 14 start-page: 1121 year: 2021 end-page: 1139 publication-title: Energy Environ. Sci. – volume: 142 start-page: 11417 year: 2020 end-page: 11427 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1987 year: 2021 end-page: 2026 publication-title: Joule – volume: 142 start-page: 2857 year: 2020 end-page: 2867 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 478 year: 2020 end-page: 486 publication-title: Nat. Energy – volume: 10 start-page: 892 year: 2019 publication-title: Nat. Commun. – volume: 141 start-page: 18704 year: 2019 end-page: 18714 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 317 year: 2020 end-page: 325 publication-title: Nat. Energy – volume: 13 start-page: 1877 year: 2022 publication-title: Nat. Commun. – volume: 51 start-page: 3814 year: 2006 end-page: 3819 publication-title: Electrochim. Acta – volume: 49 start-page: 6632 year: 2020 end-page: 6665 publication-title: Chem. Soc. Rev. – volume: 575 start-page: 639 year: 2019 end-page: 642 publication-title: Nature – volume: 143 start-page: 7578 year: 2021 end-page: 7587 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 7941 year: 2021 end-page: 8002 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 3765 year: 2021 publication-title: Nat. Commun. – volume: 364 start-page: 1091 year: 2019 end-page: 1094 publication-title: Science – volume: 10 start-page: 974 year: 2018 end-page: 980 publication-title: Nat. Chem. – volume: 3 start-page: 140 year: 2018 end-page: 147 publication-title: Nat. Energy – volume: 10 start-page: 8632 year: 2020 end-page: 8639 publication-title: ACS Catal. – volume: 10 start-page: 3919 year: 2019 publication-title: Nat. Commun. |
SSID | ssj0028806 |
Score | 2.5994196 |
Snippet | Developing electrocatalytic reactions with high‐efficiency can make important contributions to carbon neutrality. However, poor long‐term stability of... Developing electrocatalytic reactions with high-efficiency can make important contributions to carbon neutrality. However, poor long-term stability of... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202210375 |
SubjectTerms | C2+ Products Carbon Dioxide Catalysts Efficiency Electrocatalysis Electrowinning Green Chemistry in Situ Regeneration of Catalyst Oxidation Regeneration Selectivity Surface structure Valence |
Title | In Situ Periodic Regeneration of Catalyst during CO2 Electroreduction to C2+ Products |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202210375 https://www.proquest.com/docview/2709715671 https://www.proquest.com/docview/2694416830 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754F-eNCL5Jt-7k0u5RyoYTnKIO9laStBEVWtm6B_315jRbvTzqW0sTaE_OSb8m_b6PkHPNRRaDtkGkbBRw7So9NkIFYSY0YzLUUHsR3Izk1ZhfT8TkG4vf60M0C25YGfV8jQWu9KzzJRqKDGz3fQeATDdkmeMPW4iK7hv9KHDJ6elFjAXoQr9UbQyh87P7D3z5HaXWr5nBJlHLG_R_l7y255Vum49f2o3_eYItsrHAoPTSJ802WcmLHbKWLK3fdsl4WNCH52pO71x-ltmzoff5U61PjcNIS0sTXPV5n1XU0xxpcgu07x11pigGW7erSprABb3zorKzPTIe9B-Tq2DhvxC8MAYiEHlXGKGFMD3ckVEODSqWhT0NJrTChrHJgCsOmbSKqzhnJmJMaC3diFvrptJ9slqURX5AKOqadrMMImmAa2kdruMWwFjNVdchwBY5XsY_XRTRLIUIBa6EjLotctZcdqHAPQ1V5OXctZE9B-hkzMIWgTrY6ZuX6Ui9IDOkGOa0CXN6ORr2m7PDv3Q6Iut4HNRGEsdktZrO8xMHTSp9WqffJ0Zu2jo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD4h8IAvire4gjom-mQK7ZlLuw8-kLJkV2AlyCa81Zlph6BJS9huCPwr_4q_yDnttoqPJjz42HaadOZc-s3lfB_AOyNknqBxQaxdHAjjIz2xUgdhLg3nKjTYaBEcTdV4Jj6dybMV-NHVwrT8EP2CG0VGk68pwGlBeuc3ayiVYPsJHiKVunXnKg-Km2s_a5t_nOx5E79H3B-dpuNgKSwQfOMcZSCLSFpppLRD2mrQHuZonodDgzZ00oWJzVFogblyWuik4DbmXBqjfFeci0gowmf9NZIRJ7r-vZOesQp9OLQFTZwHpHvf8USGuHP3e-8g2j9xcfNj238EP7shac-zfN9e1Gbb3v7FFvlfjdkGPFzCbLbbxsVjWCnKJ7Cedup2T2E2KdmXi3rBjn0IVvmFZSfFeUPBTZ7KKsdSWti6mdesreRk6Wdko1Y06Ir4bpt2dcVS_MCOW97c-TOY3UuvnsNqWZXFC2BE3RrlOcbKojDKeegqHKJ1RujIg9wBbHUGz5Z5Yp5hTBxeUsXRAN72j_1Q0LaNLotq4duoocesKuHhALCxbnbZMpFkLec0ZmTWrDdrtjudjPqrl__y0htYH58eHWaHk-nBJjyg-0Gjm7EFq_XVonjlkVhtXje-z-DrfTvOLycKN7M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qigRseKMGCh0kWCG39p2HnUUXlZOooRCiQqTuzDw8qCDZVeMIla_iV_ijznhi07JE6oKl7bHkuY_xmcc9B-C1YtxkqGyUSptGTLlMzzSXUWy4olTEClstgg8zcbhg7074yQb86mphAj9Ev-DmM6Mdr32Cnxm794c01Fdgu_kdoq90645VHpUXP9ykbbk_HTkPv0GcjD_nh9FaVyD6RinyiJcJ11xxrod-p0E6lCOpiYcKdWy5jTNtkEmGRljJZFZSnVLKlRKuJ9YmXifCDfq3mIiHXixidNwTVqHLhlDPRGnkZe87msgY965_7zVAexUWt_-1yX343VkkHGf5vrtq1K7--RdZ5P9ksgdwbw2yyUHIioewUVaP4E7eads9hsW0Ip9OmxWZuwSszakmx-XXloDbxympLcn9stbFsiGhjpPkH5GMg2TQuWe7bds1NcnxLZkH1tzlE1jcSK-ewmZVV-UWEE_cmhiDqdDIlLAOuDKLqK1iMnEQdwDbnb-L9SixLDD1DF5cpMkAXvWPnSn8po2synrl2oihQ6wio_EAsHVucRZ4SIrAOI2Fd2vRu7U4mE3H_dWzf3lpB27PR5Pi_XR29Bzu-ttRK5qxDZvN-ap84WBYo162kU_gy03HzSUctTZi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Periodic+Regeneration+of+Catalyst+during+CO2+Electroreduction+to+C2%2B+Products&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Liang&rft.au=Ma%2C+Xiaodong&rft.au=Wu%2C+Limin&rft.au=Tan%2C+Xingxing&rft.date=2022-09-12&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=37&rft_id=info:doi/10.1002%2Fanie.202210375&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |