CuGaO2: A Promising Inorganic Hole‐Transporting Material for Highly Efficient and Stable Perovskite Solar Cells
The p‐type inorganic semiconductor CuGaO2 as a hole‐transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better‐energy level matching, and superior stability, as well as low‐temperature processing technique. Compared to organic HTL, a very competitive PCE of 18...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The p‐type inorganic semiconductor CuGaO2 as a hole‐transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better‐energy level matching, and superior stability, as well as low‐temperature processing technique. Compared to organic HTL, a very competitive PCE of 18.51% with long‐term stability is achieved. This indicates that CuGaO2 is a promising HTL for efficient and stable PSCs. |
---|---|
AbstractList | The p-type inorganic semiconductor CuGaO2 as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better-energy level matching, and superior stability, as well as low-temperature processing technique. Compared to organic HTL, a very competitive PCE of 18.51% with long-term stability is achieved. This indicates that CuGaO2 is a promising HTL for efficient and stable PSCs. The p-type inorganic semiconductor CuGaO2 as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better-energy level matching, and superior stability, as well as low-temperature processing technique. Compared to organic HTL, a very competitive PCE of 18.51% with long-term stability is achieved. This indicates that CuGaO2 is a promising HTL for efficient and stable PSCs.The p-type inorganic semiconductor CuGaO2 as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better-energy level matching, and superior stability, as well as low-temperature processing technique. Compared to organic HTL, a very competitive PCE of 18.51% with long-term stability is achieved. This indicates that CuGaO2 is a promising HTL for efficient and stable PSCs. |
Author | Wang, Huan Chen, Wei Zhang, Hua Jen, Alex K.‐Y. |
Author_xml | – sequence: 1 givenname: Hua surname: Zhang fullname: Zhang, Hua organization: Huazhong University of Science and Technology – sequence: 2 givenname: Huan surname: Wang fullname: Wang, Huan organization: University of Washington – sequence: 3 givenname: Wei surname: Chen fullname: Chen, Wei email: wnlochenwei@mail.hust.edu.cn organization: Huazhong University of Science and Technology – sequence: 4 givenname: Alex K.‐Y. surname: Jen fullname: Jen, Alex K.‐Y. email: ajen@uw.edu organization: University of Washington |
BookMark | eNpdkE1rGzEQhkVxoU6aa86CXnpZZ_Sx61Vvxk3sgIMDSc9ivCu5cmXJkdYJvuUn5Dfml3RNig89DcM8vLzznJFBiMEQcslgxAD4FbZbHHFgFUhVy09kyErOCgmqHJAhKFEWqpL1F3KW8wYAVAXVkDxN9zNc8h90Qu9T3LrswprehpjWGFxD59Gb99e3x4Qh72Lqjtc77Exy6KmNic7d-rc_0GtrXeNM6CiGlj50uPKG3psUn_Mf1xn6ED0mOjXe56_ks0WfzcW_eU5-3Vw_TufFYjm7nU4WxUYILot6DLBitWXMGsVLa5sKzNg0aK2AGsHKFnG1kmNVtS2IVkgmjOSsYSXCmJXinHz_yN2l-LQ3udP9d03fAIOJ-6xZXfJKAcgj-u0_dBP3KfTtNFMcJO91VT2lPqgX581B75LbYjpoBvqoXx_165N-Pfl5Nzlt4i_kM33B |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201604984 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201604984 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMR‐1608279 – fundername: National Natural Science Foundation funderid: 51672094 – fundername: Office of Naval Research funderid: N00014‐14‐1‐0246 – fundername: Self‐determined and Innovative Research Funds of HUST funderid: 2016JCTD111 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-j3324-8700b18f11fe925ffc60e7ecaff308a0f4daabb4796dd03d3413e421c15a07153 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 22:22:08 EDT 2025 Mon Jul 14 10:07:55 EDT 2025 Wed Jan 22 16:33:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j3324-8700b18f11fe925ffc60e7ecaff308a0f4daabb4796dd03d3413e421c15a07153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1920420006 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1852690045 proquest_journals_1920420006 wiley_primary_10_1002_adma_201604984_ADMA201604984 |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2005; 391 2015; 6 2013; 501 2011; 84 2003; 173 2014; 26 2011; 99 2009; 131 2013; 7 2015; 8 2008; 92 2011; 5 2016; 11 2010; 82 2016; 4 2015; 23 2016; 6 1971; 10 2012; 2 2014; 5 2006; 85 2012; 3 2014; 2 2015; 137 2013; 13 2002; 88 2013; 499 2014; 14 2013; 136 2014; 13 2013; 135 2016; 138 2014; 9 2016; 28 2014; 7 2014; 50 2012; 22 2012; 338 2014; 345 2014; 53 |
References_xml | – volume: 50 start-page: 14161 year: 2014 publication-title: Chem. Commun. – volume: 138 start-page: 10897 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 14353 year: 2012 publication-title: J. Mater. Chem. – volume: 92 start-page: 253301 year: 2008 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 7 start-page: 486 year: 2013 publication-title: Nat. Photonics – volume: 85 start-page: 117 year: 2006 publication-title: Appl. Phys. A – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 6 start-page: 1601165 year: 2016 publication-title: Adv. Energy Mater. – volume: 138 start-page: 2528 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 440 year: 2016 publication-title: Adv. Mater. – volume: 23 start-page: 1 year: 2015 publication-title: Prog. Photovoltaics – volume: 53 start-page: 5845 year: 2014 publication-title: Inorg. Chem. – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 99 start-page: 153506 year: 2011 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 2981 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 start-page: 687 year: 2014 publication-title: Nat. Nanotechnol. – volume: 391 start-page: 262 year: 2005 publication-title: J. Alloys Compd. – volume: 53 start-page: 3151 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 4085 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 1764 year: 2013 publication-title: Nano Lett. – volume: 8 start-page: 2946 year: 2015 publication-title: Energy Environ. Sci. – volume: 2 start-page: 2968 year: 2014 publication-title: J. Mater. Chem. A – volume: 82 start-page: 245207 year: 2010 publication-title: Phys. Rev. B – volume: 138 start-page: 11833 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 99 start-page: 131104 year: 2011 publication-title: Appl. Phys. Lett. – volume: 135 start-page: 19087 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 543 year: 2011 publication-title: Nat. Photonics – volume: 7 start-page: 2963 year: 2014 publication-title: Energy Environ. Sci. – volume: 4 start-page: 8724 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1071 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 3 start-page: 1074 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 88 start-page: 066405 year: 2002 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 5561 year: 2014 publication-title: Nano Lett. – volume: 14 start-page: 2584 year: 2014 publication-title: Nano Lett. – volume: 8 start-page: 1816 year: 2015 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1600401 year: 2016 publication-title: Adv. Energy Mater. – volume: 7 start-page: 2614 year: 2014 publication-title: Energy Environ. Sci. – volume: 84 start-page: 035125 year: 2011 publication-title: Phys. Rev. B – volume: 173 start-page: 355 year: 2003 publication-title: J. Solid State Chem. – volume: 28 start-page: 2515 year: 2016 publication-title: Chem. Mater. – volume: 136 start-page: 758 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 4991 year: 2014 publication-title: Adv. Mater – volume: 13 start-page: 838 year: 2014 publication-title: Nat. Mater. – volume: 5 start-page: 1 year: 2014 publication-title: Nat. Commun. – volume: 10 start-page: 713 year: 1971 publication-title: Inorg. Chem. – volume: 137 start-page: 15656 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 591 year: 2012 publication-title: Sci. Rep. – volume: 26 start-page: 6160 year: 2014 publication-title: Chem. Mater. – volume: 11 start-page: 75 year: 2016 publication-title: Nat. Nanotechnol. – volume: 345 start-page: 295 year: 2014 publication-title: Science – volume: 501 start-page: 395 year: 2013 publication-title: Nature |
SSID | ssj0009606 |
Score | 2.6404376 |
Snippet | The p‐type inorganic semiconductor CuGaO2 as a hole‐transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better‐energy... The p-type inorganic semiconductor CuGaO2 as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better-energy... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | ambient stability Carrier mobility Carrier transport CuGaO2 inorganic hole transporters Materials science P-type semiconductors perovskite solar cells Photovoltaic cells power conversion efficiency Solar cells Stability |
Title | CuGaO2: A Promising Inorganic Hole‐Transporting Material for Highly Efficient and Stable Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201604984 https://www.proquest.com/docview/1920420006 https://www.proquest.com/docview/1852690045 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMcttCc4tDxadctSGYlrdp3Eyca9RQt0QVpAbZG4RX6MD22UwD4qtSc-Ap-RT4LH2Q27PbbHxLGUZMaeX5zxfwg5EZLb2Ogo4MBMwBPQgVDSBlxkmkGc2dDg5uTJVTq-5Zd3yd3aLv5GH6JdcMOR4edrHOBSzQavoqHSeN2gMHWMm6EgKCZsIRV9fdWPQjz3YntxEoiUZyvVRhYNNrtv8OU6pfowc_6WyNUNNtklP_uLuerrP39pN_7PE-ySN0sGpXnjNHtkC6p9srOmTHhAHkaLL_I6-kxzejOtnS-4s_SiampAaTquS3h-fGqV0bF1Iufem6nDYIrpI-VveuYFKlxco7Iy1IGtKoHewLT-NcNVY_oNP6zpCMpy9o7cnp99H42DZXWG4EfsKMxNo4yp0BkztCCixFqdMhiCltbGLJPMciOlUnwoUmNYbDBcAo9CHSbScU0Svyedqq7gA6EOOZS2gOKnKRfWKCuNTpSARMZaaN4lvZV1iuUQmxUOTd2Eg-G2S47bZvdC8I-HrKBeuGsyLKCO2NolkTdFcd-IeBSNXHNUoBGK1ghFfjrJ26OP_9LpkGxHGPp9ZnePdObTBRw5cJmrT945XwDGX-iQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHlB5aDvQttqXUlXoNOIkTYm6r5bG0LEUtSL1FfowPJUroPpDaEx-hn5FPgsfZDY9je0wcS0lm7PnFGf8H4JNUwqXWJJFAbiORoYmkVi4SsjAc08LFljYnj47z4Zn4_CNbZBPSXphWH6JbcKOREeZrGuC0IL11qxqqbBAOinMPuYV4BI-prDfJ5-9-u1WQIkAPcntpFslcFAvdRp5s3e9_jzDvcmoINPvPQC9usc0vOd-cTfWm-fNAvfG_nuE5rM4xlPVbv3kBS1i_hJU74oSv4NdgdqC-Jjusz07GjXcHf5Yd1m0ZKMOGTYXXV387cXRqHalpcGjmSZhRBkn1m-0FjQof2piqLfNsqytkJzhuLie0cMy-07c1G2BVTV7D2f7e6WAYzQs0RD9TD2J-JuVcx96esUOZZM6ZnOM2GuVcygvFnbBKaS22ZW4tTy1FTBRJbOJMebTJ0jewXDc1rgHz1KGNQ9I_zYV0VjtlTaYlZio10ogerC_MU85H2aT0dOrnHIq4PfjYNfsXQj89VI3NzF9TUA11ItceJMEW5UWr41G2is1JSUYoOyOU_d1Rvzt6-y-dPsCT4enoqDw6PP7yDp4mRAIh0XsdlqfjGb73HDPVG8FTbwBXTOys |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUCRED7xRFwoYiWtaJ3HSmNtqt8sW2LICKvUW-TE-0Chp94EEJz5CP2M_CR5nN91yhGPiWEoyM55fHPs_AG-lEi61JokEchuJDE0ktXKRkIXhmBYutrQ5eXKcj0_Eh9PsdGMXf6sP0U24UWSE8ZoC_Ny6_WvRUGWDblCce8YtxG24I3IuqXjD8Mu1gBTxeVDbS7NI5qJYyzbyZP9m_xuAuYmpIc-MHoBa32G7vORsb7nQe-bXX-KN__MID-H-CkJZv_WaR3AL68ewvSFN-AQuBsv36nPyjvXZdNZ4Z_Bn2VHdFoEybNxUePX7spNGp9aJWgR3Zp6DGa0fqX6yw6BQ4RMbU7Vlnmx1hWyKs-bHnKaN2Vf6smYDrKr5UzgZHX4bjKNVeYboe-oxzI-jnOvYWzN2KJPMOZNzPECjnEt5obgTVimtxYHMreWppXyJIolNnCkPNln6DLbqpsYdYJ45tHFI6qe5kM5qp6zJtMRMpUYa0YPdtXXKVYzNS8-mfsShfNuDN12zfyH0y0PV2Cz9NQVVUCdu7UESTFGetyoeZavXnJRkhLIzQtkfTvrd0fN_6fQa7k6Ho_LT0fHHF3AvIQwIq7x3YWsxW-JLDzEL_Sr46R-jfetb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CuGaO2+%3A+A+Promising+Inorganic+Hole-Transporting+Material+for+Highly+Efficient+and+Stable+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Hua&rft.au=Wang%2C+Huan&rft.au=Chen%2C+Wei&rft.au=Jen%2C+Alex+K-Y&rft.date=2017-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=8&rft_id=info:doi/10.1002%2Fadma.201604984&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |