CuGaO2: A Promising Inorganic Hole‐Transporting Material for Highly Efficient and Stable Perovskite Solar Cells

The p‐type inorganic semiconductor CuGaO2 as a hole‐transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better‐energy level matching, and superior stability, as well as low‐temperature processing technique. Compared to organic HTL, a very competitive PCE of 18...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 8
Main Authors Zhang, Hua, Wang, Huan, Chen, Wei, Jen, Alex K.‐Y.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The p‐type inorganic semiconductor CuGaO2 as a hole‐transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better‐energy level matching, and superior stability, as well as low‐temperature processing technique. Compared to organic HTL, a very competitive PCE of 18.51% with long‐term stability is achieved. This indicates that CuGaO2 is a promising HTL for efficient and stable PSCs.
AbstractList The p-type inorganic semiconductor CuGaO2 as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better-energy level matching, and superior stability, as well as low-temperature processing technique. Compared to organic HTL, a very competitive PCE of 18.51% with long-term stability is achieved. This indicates that CuGaO2 is a promising HTL for efficient and stable PSCs.
The p-type inorganic semiconductor CuGaO2 as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better-energy level matching, and superior stability, as well as low-temperature processing technique. Compared to organic HTL, a very competitive PCE of 18.51% with long-term stability is achieved. This indicates that CuGaO2 is a promising HTL for efficient and stable PSCs.The p-type inorganic semiconductor CuGaO2 as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better-energy level matching, and superior stability, as well as low-temperature processing technique. Compared to organic HTL, a very competitive PCE of 18.51% with long-term stability is achieved. This indicates that CuGaO2 is a promising HTL for efficient and stable PSCs.
Author Wang, Huan
Chen, Wei
Zhang, Hua
Jen, Alex K.‐Y.
Author_xml – sequence: 1
  givenname: Hua
  surname: Zhang
  fullname: Zhang, Hua
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Huan
  surname: Wang
  fullname: Wang, Huan
  organization: University of Washington
– sequence: 3
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: wnlochenwei@mail.hust.edu.cn
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Alex K.‐Y.
  surname: Jen
  fullname: Jen, Alex K.‐Y.
  email: ajen@uw.edu
  organization: University of Washington
BookMark eNpdkE1rGzEQhkVxoU6aa86CXnpZZ_Sx61Vvxk3sgIMDSc9ivCu5cmXJkdYJvuUn5Dfml3RNig89DcM8vLzznJFBiMEQcslgxAD4FbZbHHFgFUhVy09kyErOCgmqHJAhKFEWqpL1F3KW8wYAVAXVkDxN9zNc8h90Qu9T3LrswprehpjWGFxD59Gb99e3x4Qh72Lqjtc77Exy6KmNic7d-rc_0GtrXeNM6CiGlj50uPKG3psUn_Mf1xn6ED0mOjXe56_ks0WfzcW_eU5-3Vw_TufFYjm7nU4WxUYILot6DLBitWXMGsVLa5sKzNg0aK2AGsHKFnG1kmNVtS2IVkgmjOSsYSXCmJXinHz_yN2l-LQ3udP9d03fAIOJ-6xZXfJKAcgj-u0_dBP3KfTtNFMcJO91VT2lPqgX581B75LbYjpoBvqoXx_165N-Pfl5Nzlt4i_kM33B
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201604984
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201604984
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMR‐1608279
– fundername: National Natural Science Foundation
  funderid: 51672094
– fundername: Office of Naval Research
  funderid: N00014‐14‐1‐0246
– fundername: Self‐determined and Innovative Research Funds of HUST
  funderid: 2016JCTD111
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-j3324-8700b18f11fe925ffc60e7ecaff308a0f4daabb4796dd03d3413e421c15a07153
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 22:22:08 EDT 2025
Mon Jul 14 10:07:55 EDT 2025
Wed Jan 22 16:33:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j3324-8700b18f11fe925ffc60e7ecaff308a0f4daabb4796dd03d3413e421c15a07153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1920420006
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_1852690045
proquest_journals_1920420006
wiley_primary_10_1002_adma_201604984_ADMA201604984
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2005; 391
2015; 6
2013; 501
2011; 84
2003; 173
2014; 26
2011; 99
2009; 131
2013; 7
2015; 8
2008; 92
2011; 5
2016; 11
2010; 82
2016; 4
2015; 23
2016; 6
1971; 10
2012; 2
2014; 5
2006; 85
2012; 3
2014; 2
2015; 137
2013; 13
2002; 88
2013; 499
2014; 14
2013; 136
2014; 13
2013; 135
2016; 138
2014; 9
2016; 28
2014; 7
2014; 50
2012; 22
2012; 338
2014; 345
2014; 53
References_xml – volume: 50
  start-page: 14161
  year: 2014
  publication-title: Chem. Commun.
– volume: 138
  start-page: 10897
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 14353
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 92
  start-page: 253301
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 7
  start-page: 486
  year: 2013
  publication-title: Nat. Photonics
– volume: 85
  start-page: 117
  year: 2006
  publication-title: Appl. Phys. A
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 6
  start-page: 1601165
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 138
  start-page: 2528
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 440
  year: 2016
  publication-title: Adv. Mater.
– volume: 23
  start-page: 1
  year: 2015
  publication-title: Prog. Photovoltaics
– volume: 53
  start-page: 5845
  year: 2014
  publication-title: Inorg. Chem.
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 99
  start-page: 153506
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 2981
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 687
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 391
  start-page: 262
  year: 2005
  publication-title: J. Alloys Compd.
– volume: 53
  start-page: 3151
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 4085
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 1764
  year: 2013
  publication-title: Nano Lett.
– volume: 8
  start-page: 2946
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 2968
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 82
  start-page: 245207
  year: 2010
  publication-title: Phys. Rev. B
– volume: 138
  start-page: 11833
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 99
  start-page: 131104
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 135
  start-page: 19087
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 543
  year: 2011
  publication-title: Nat. Photonics
– volume: 7
  start-page: 2963
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 8724
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1071
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  start-page: 1074
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 88
  start-page: 066405
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 5561
  year: 2014
  publication-title: Nano Lett.
– volume: 14
  start-page: 2584
  year: 2014
  publication-title: Nano Lett.
– volume: 8
  start-page: 1816
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1600401
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 2614
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 84
  start-page: 035125
  year: 2011
  publication-title: Phys. Rev. B
– volume: 173
  start-page: 355
  year: 2003
  publication-title: J. Solid State Chem.
– volume: 28
  start-page: 2515
  year: 2016
  publication-title: Chem. Mater.
– volume: 136
  start-page: 758
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 4991
  year: 2014
  publication-title: Adv. Mater
– volume: 13
  start-page: 838
  year: 2014
  publication-title: Nat. Mater.
– volume: 5
  start-page: 1
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  start-page: 713
  year: 1971
  publication-title: Inorg. Chem.
– volume: 137
  start-page: 15656
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 591
  year: 2012
  publication-title: Sci. Rep.
– volume: 26
  start-page: 6160
  year: 2014
  publication-title: Chem. Mater.
– volume: 11
  start-page: 75
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 345
  start-page: 295
  year: 2014
  publication-title: Science
– volume: 501
  start-page: 395
  year: 2013
  publication-title: Nature
SSID ssj0009606
Score 2.6404376
Snippet The p‐type inorganic semiconductor CuGaO2 as a hole‐transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better‐energy...
The p-type inorganic semiconductor CuGaO2 as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) provides higher carrier mobility, better-energy...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms ambient stability
Carrier mobility
Carrier transport
CuGaO2
inorganic hole transporters
Materials science
P-type semiconductors
perovskite solar cells
Photovoltaic cells
power conversion efficiency
Solar cells
Stability
Title CuGaO2: A Promising Inorganic Hole‐Transporting Material for Highly Efficient and Stable Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201604984
https://www.proquest.com/docview/1920420006
https://www.proquest.com/docview/1852690045
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMcttCc4tDxadctSGYlrdp3Eyca9RQt0QVpAbZG4RX6MD22UwD4qtSc-Ap-RT4LH2Q27PbbHxLGUZMaeX5zxfwg5EZLb2Ogo4MBMwBPQgVDSBlxkmkGc2dDg5uTJVTq-5Zd3yd3aLv5GH6JdcMOR4edrHOBSzQavoqHSeN2gMHWMm6EgKCZsIRV9fdWPQjz3YntxEoiUZyvVRhYNNrtv8OU6pfowc_6WyNUNNtklP_uLuerrP39pN_7PE-ySN0sGpXnjNHtkC6p9srOmTHhAHkaLL_I6-kxzejOtnS-4s_SiampAaTquS3h-fGqV0bF1Iufem6nDYIrpI-VveuYFKlxco7Iy1IGtKoHewLT-NcNVY_oNP6zpCMpy9o7cnp99H42DZXWG4EfsKMxNo4yp0BkztCCixFqdMhiCltbGLJPMciOlUnwoUmNYbDBcAo9CHSbScU0Svyedqq7gA6EOOZS2gOKnKRfWKCuNTpSARMZaaN4lvZV1iuUQmxUOTd2Eg-G2S47bZvdC8I-HrKBeuGsyLKCO2NolkTdFcd-IeBSNXHNUoBGK1ghFfjrJ26OP_9LpkGxHGPp9ZnePdObTBRw5cJmrT945XwDGX-iQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHlB5aDvQttqXUlXoNOIkTYm6r5bG0LEUtSL1FfowPJUroPpDaEx-hn5FPgsfZDY9je0wcS0lm7PnFGf8H4JNUwqXWJJFAbiORoYmkVi4SsjAc08LFljYnj47z4Zn4_CNbZBPSXphWH6JbcKOREeZrGuC0IL11qxqqbBAOinMPuYV4BI-prDfJ5-9-u1WQIkAPcntpFslcFAvdRp5s3e9_jzDvcmoINPvPQC9usc0vOd-cTfWm-fNAvfG_nuE5rM4xlPVbv3kBS1i_hJU74oSv4NdgdqC-Jjusz07GjXcHf5Yd1m0ZKMOGTYXXV387cXRqHalpcGjmSZhRBkn1m-0FjQof2piqLfNsqytkJzhuLie0cMy-07c1G2BVTV7D2f7e6WAYzQs0RD9TD2J-JuVcx96esUOZZM6ZnOM2GuVcygvFnbBKaS22ZW4tTy1FTBRJbOJMebTJ0jewXDc1rgHz1KGNQ9I_zYV0VjtlTaYlZio10ogerC_MU85H2aT0dOrnHIq4PfjYNfsXQj89VI3NzF9TUA11ItceJMEW5UWr41G2is1JSUYoOyOU_d1Rvzt6-y-dPsCT4enoqDw6PP7yDp4mRAIh0XsdlqfjGb73HDPVG8FTbwBXTOys
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUCRED7xRFwoYiWtaJ3HSmNtqt8sW2LICKvUW-TE-0Chp94EEJz5CP2M_CR5nN91yhGPiWEoyM55fHPs_AG-lEi61JokEchuJDE0ktXKRkIXhmBYutrQ5eXKcj0_Eh9PsdGMXf6sP0U24UWSE8ZoC_Ny6_WvRUGWDblCce8YtxG24I3IuqXjD8Mu1gBTxeVDbS7NI5qJYyzbyZP9m_xuAuYmpIc-MHoBa32G7vORsb7nQe-bXX-KN__MID-H-CkJZv_WaR3AL68ewvSFN-AQuBsv36nPyjvXZdNZ4Z_Bn2VHdFoEybNxUePX7spNGp9aJWgR3Zp6DGa0fqX6yw6BQ4RMbU7Vlnmx1hWyKs-bHnKaN2Vf6smYDrKr5UzgZHX4bjKNVeYboe-oxzI-jnOvYWzN2KJPMOZNzPECjnEt5obgTVimtxYHMreWppXyJIolNnCkPNln6DLbqpsYdYJ45tHFI6qe5kM5qp6zJtMRMpUYa0YPdtXXKVYzNS8-mfsShfNuDN12zfyH0y0PV2Cz9NQVVUCdu7UESTFGetyoeZavXnJRkhLIzQtkfTvrd0fN_6fQa7k6Ho_LT0fHHF3AvIQwIq7x3YWsxW-JLDzEL_Sr46R-jfetb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CuGaO2+%3A+A+Promising+Inorganic+Hole-Transporting+Material+for+Highly+Efficient+and+Stable+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Hua&rft.au=Wang%2C+Huan&rft.au=Chen%2C+Wei&rft.au=Jen%2C+Alex+K-Y&rft.date=2017-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=29&rft.issue=8&rft_id=info:doi/10.1002%2Fadma.201604984&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon