Potassium‐Assisted Fabrication of Intrinsic Defects in Porous Carbons for Electrocatalytic CO2 Reduction

The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C) with abundant intrinsic defects and complete...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 42; pp. e2205933 - n/a
Main Authors Ling, Li‐Li, Jiao, Long, Liu, Xiaoshuo, Dong, Yun, Yang, Weijie, Zhang, Hongjun, Ye, Bangjiao, Chen, Jun, Jiang, Hai‐Long
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+‐confined metal–organic frameworks (MOFs). Positron‐annihilation lifetime spectroscopy, X‐ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12‐vacancy‐type carbon defects (V12) in K‐defect‐C. Remarkably, the K‐defect‐C achieves ultrahigh CO Faradaic efficiency (99%) at −0.45 V in CO2 electroreduction, far surpassing MOF‐derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K‐defect‐C favor CO2 adsorption and significantly accelerate the formation of the rate‐determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis. A K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C‐1100) with abundant 12‐vacancy‐type (V12) carbon defects via direct pyrolysis of a K+‐confined metal–organic framework (K+@bio‐MOF‐1) at 1100 °C. Strikingly, the K‐defect‐C‐1100 presents excellent electrocatalytic CO2 reduction activity with ultrahigh CO Faradic efficiency up to 99% at −0.45 V, far surpassing the N‐doped carbon (N‐C‐1100) counterpart.
AbstractList The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+‐confined metal–organic frameworks (MOFs). Positron‐annihilation lifetime spectroscopy, X‐ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12‐vacancy‐type carbon defects (V12) in K‐defect‐C. Remarkably, the K‐defect‐C achieves ultrahigh CO Faradaic efficiency (99%) at −0.45 V in CO2 electroreduction, far surpassing MOF‐derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K‐defect‐C favor CO2 adsorption and significantly accelerate the formation of the rate‐determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis.
The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+‐confined metal–organic frameworks (MOFs). Positron‐annihilation lifetime spectroscopy, X‐ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12‐vacancy‐type carbon defects (V12) in K‐defect‐C. Remarkably, the K‐defect‐C achieves ultrahigh CO Faradaic efficiency (99%) at −0.45 V in CO2 electroreduction, far surpassing MOF‐derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K‐defect‐C favor CO2 adsorption and significantly accelerate the formation of the rate‐determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis. A K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C‐1100) with abundant 12‐vacancy‐type (V12) carbon defects via direct pyrolysis of a K+‐confined metal–organic framework (K+@bio‐MOF‐1) at 1100 °C. Strikingly, the K‐defect‐C‐1100 presents excellent electrocatalytic CO2 reduction activity with ultrahigh CO Faradic efficiency up to 99% at −0.45 V, far surpassing the N‐doped carbon (N‐C‐1100) counterpart.
The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+ -assisted synthetic strategy is developed to afford porous carbon (K-defect-C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+ -confined metal-organic frameworks (MOFs). Positron-annihilation lifetime spectroscopy, X-ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12-vacancy-type carbon defects (V12 ) in K-defect-C. Remarkably, the K-defect-C achieves ultrahigh CO Faradaic efficiency (99%) at -0.45 V in CO2 electroreduction, far surpassing MOF-derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K-defect-C favor CO2 adsorption and significantly accelerate the formation of the rate-determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis.The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+ -assisted synthetic strategy is developed to afford porous carbon (K-defect-C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+ -confined metal-organic frameworks (MOFs). Positron-annihilation lifetime spectroscopy, X-ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12-vacancy-type carbon defects (V12 ) in K-defect-C. Remarkably, the K-defect-C achieves ultrahigh CO Faradaic efficiency (99%) at -0.45 V in CO2 electroreduction, far surpassing MOF-derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K-defect-C favor CO2 adsorption and significantly accelerate the formation of the rate-determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis.
Author Yang, Weijie
Jiao, Long
Ye, Bangjiao
Zhang, Hongjun
Dong, Yun
Chen, Jun
Jiang, Hai‐Long
Liu, Xiaoshuo
Ling, Li‐Li
Author_xml – sequence: 1
  givenname: Li‐Li
  surname: Ling
  fullname: Ling, Li‐Li
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Long
  surname: Jiao
  fullname: Jiao, Long
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Xiaoshuo
  surname: Liu
  fullname: Liu, Xiaoshuo
  organization: Southeast University
– sequence: 4
  givenname: Yun
  surname: Dong
  fullname: Dong, Yun
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Weijie
  surname: Yang
  fullname: Yang, Weijie
  organization: North China Electric Power University
– sequence: 6
  givenname: Hongjun
  surname: Zhang
  fullname: Zhang, Hongjun
  email: hjzhang8@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Bangjiao
  surname: Ye
  fullname: Ye, Bangjiao
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  organization: University of Wollongong
– sequence: 9
  givenname: Hai‐Long
  orcidid: 0000-0002-2975-7977
  surname: Jiang
  fullname: Jiang, Hai‐Long
  email: jianglab@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNpdkM1KAzEUhYNUsFa3rgNu3Ey9SSaTybL0RwuKIroe0jSBlGlSkxmkOx_BZ_RJTKm4cHXv5X7ncDjnaOCDNwhdERgTAHqr1ls1pkApcMnYCRoSTklRguQDNATJeCGrsj5D5yltAEBWUA3R5jl0KiXXb78_vyZ5SZ1Z44VaRadV54LHweKl76LzyWk8M9boLmHn8XOIoU94quIq-IRtiHje5mcMWajafZfx6RPFL2bd64PTBTq1qk3m8neO0Nti_jq9Lx6e7pbTyUOxYYyyghLBLVutS1ETKxg3XNeV1sRITkolLdey1KWuwGpFBbMrWdK6EqbmtMwyYCN0c_TdxfDem9Q1W5e0aVvlTU7cUAEEBBOVyOj1P3QT-uhzukzRinGgNcuUPFIfrjX7ZhfdVsV9Q6A59N4cem_-em8ms8fJ38V-AP1je58
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202205933
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202205933
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21725101; 22161142001; 22001242; 11975225
– fundername: Fundamental Research Funds for the Central Universities
  funderid: WK2060000040; WK2060000038
– fundername: National Key Research and Development Program of China
  funderid: 2021YFA1500400
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-j3323-2175f3bd4781f735e5c86cc1e9514a9f5c94c4c60fca273fb942867e85243bd03
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 23:59:42 EDT 2025
Fri Jul 25 08:07:40 EDT 2025
Wed Jan 22 16:22:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j3323-2175f3bd4781f735e5c86cc1e9514a9f5c94c4c60fca273fb942867e85243bd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2975-7977
PQID 2726350283
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2701073767
proquest_journals_2726350283
wiley_primary_10_1002_adma_202205933_ADMA202205933
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2008 2017 2017 2018 2022; 130 29 50 362 12
2019 2012; 146 22
2021 2021 2014; 182 181 8
2015 2012; 115 3
2019 2021 2021; 58 143 60
2019 2014; 3 5
2019; 31
2019; 52
2013 2019 2017 2016 2018 2018 2018; 341 48 50 28 30 31 30
2010 2018 2011; 5 47 5
2015 2019 2019; 5 58 2
2012 2018 2016; 24 30 28
2020 2009 2014; 120 323 53
2019 2020; 13 32
2020; 13
2020 2017; 59 139
2009 2010; 131 132
1999; 82
2021 2012 2019; 50 51 31
References_xml – volume: 3 5
  start-page: 584 3783
  year: 2019 2014
  publication-title: Joule Nat. Commun.
– volume: 24 30 28
  start-page: 5593 9532
  year: 2012 2018 2016
  publication-title: Adv. Mater. Adv. Mater. Adv. Mater.
– volume: 146 22
  start-page: 610
  year: 2019 2012
  publication-title: Carbon J. Mater. Chem.
– volume: 115 3
  start-page: 4823 1298
  year: 2015 2012
  publication-title: Chem. Rev. Nat. Commun.
– volume: 50 51 31
  year: 2021 2012 2019
  publication-title: Chem. Soc. Rev. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 341 48 50 28 30 31 30
  start-page: 2783 805 8819
  year: 2013 2019 2017 2016 2018 2018 2018
  publication-title: Science Chem. Soc. Rev. Acc. Chem. Res. Adv. Mater. Adv. Mater. Adv. Mater. Adv. Mater.
– volume: 120 323 53
  start-page: 9363 760 7409
  year: 2020 2009 2014
  publication-title: Chem. Rev. Science Angew. Chem., Int. Ed.
– volume: 5 47 5
  start-page: 326 7628 26
  year: 2010 2018 2011
  publication-title: Nat. Nanotechnol. Chem. Soc. Rev. ACS Nano
– volume: 52
  start-page: 1721
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 5 58 2
  start-page: 6707 1031 688
  year: 2015 2019 2019
  publication-title: ACS Catal. Angew. Chem., Int. Ed. Nat. Catal.
– volume: 59 139
  start-page: 8329
  year: 2020 2017
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 130 29 50 362 12
  start-page: 5390 2684 1
  year: 2008 2017 2017 2018 2022
  publication-title: J. Am. Chem. Soc. Adv. Mater. Acc. Chem. Res. Coord. Chem. Rev. Adv. Energy Mater.
– volume: 13 32
  start-page: 1574
  year: 2019 2020
  publication-title: ACS Nano Adv. Mater.
– volume: 13
  start-page: 2839
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 58 143 60
  start-page: 6972
  year: 2019 2021 2021
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 131 132
  start-page: 8376 5578
  year: 2009 2010
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 182 181 8
  start-page: 559 270 5069
  year: 2021 2021 2014
  publication-title: Carbon Carbon ACS Nano
– volume: 82
  start-page: 2532
  year: 1999
  publication-title: Phys. Rev. Lett.
SSID ssj0009606
Score 2.6407032
Snippet The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2205933
SubjectTerms Carbon dioxide
Catalysis
CO 2 conversion
Defects
electrocatalysis
Fine structure
Materials science
Metal-organic frameworks
porous carbon
Pyrolysis
Scanning transmission electron microscopy
Title Potassium‐Assisted Fabrication of Intrinsic Defects in Porous Carbons for Electrocatalytic CO2 Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202205933
https://www.proquest.com/docview/2726350283
https://www.proquest.com/docview/2701073767
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCjMSaNjh2HmPVhwoSUFVU6hbZji21iAS16QATP4HfyC_h7KRpywhDpESxndh353zn3H1G6EaqJBSKckfKRDlUu4kT-oF0SOBLNxA-HDba4tHvj-j9mI3XsvgLfohqwc1Yhp2vjYFzMW-uSEN5YnmDTKIoOOUwCZuALYOKhiv-KAPPLdmex5zIp-GStdElzc3qG_hyHaXaz0xvH_HlCxbRJS-NRS4a8uMXd-N_enCA9koMiluF0hyiLZUeod01ZsJjNB1kOcDqyeL1-_MLRGiUIcE9LmblGh_ONL5LcygNYsYdZaNC8CTFg2yWLea4zWcCFBoDJsbdYqsdu1L0Ds_E7SeCh4Yz1rR0gka97nO775TbMjhTzyOeA04M055ITJKqDjymmAx9KW8VgDXKI81kRCWVvqslB3CkRQQujh-okBEK1VzvFG2nWarOEAbBKK0jyokCZBMFEcCTJAGXlYWcQYM1VF-KJS5tax6TwBDoGFxUQ9fVbbAK86uDpwo6CWXAzwwMU00NESuD-K1g74gLnmYSm9GPq9GPW52HVnV1_pdKF2jHnBeRfnW0nc8W6hIQSy6urFb-AJXs5Qg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BPUAPbfmpui0trgTHQHDs_Bx6WO2y2uWvCIHELTiOLS0VCdrNqqKnPkJfpa_SR-iTdMbJLtAjEgcOOSSxndgzE38zGX8G2NQmjzMjlKd1bjxh_dyLw0h7PAq1H2UhHi7b4jjsn4v9C3kxB7-na2FqfohZwI0sw32vycApIL1zxxqqckccRCtF0Stv8ioPzO139NrGXwZdFPEW5729s07fazYW8K6CgAcewnBpgyynZZY2CqSROg613jUIN4RKrNSJ0EKHvtUKp3ebJQjSw8jEkgus5gfY7jy8oG3Eia6_e3rHWEUOgaP3C6SXhCKe8kT6fOfh-z5AtPdxsZvYeq_hz3RI6nyWb9uTKtvWP_5ji3xWY_YGXjUwm7Vru1iGOVOswMt75IurcHVSVug5DCfXf3_-Qi0lfc9ZT2WjJozJSssGRYWlUZNZ17jEFzYs2Ek5Kidj1lGjDG2WIexne_VuQi4YdovPZJ2vnJ0SLS61tAbnT9LZt7BQlIV5Bww1wVibCMUNgrckShCB5Tl65TJWEhtswfpUD9Lm8zFOeUQcQQT9WvB5dhsNn_7mqMJgJ7EMutIRkfG0gDuhpzc1QUlaU1HzlKSdzqSdtrtH7dnZ-8dU2oDF_tnRYXo4OD74AEt0vU5sXIeFajQxHxGgVdknZxIMLp9an_4BoQNBdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKlXlQP_FUqCuBMdAcGwnOXBYbVixpYUVAolb6vhHgooE7WaF4MQj9FF4lb5Cn6RjJ7tAj5U49JBDEv_Enhn7G2f8GWBdGZ0UhslAKW0CZkMdJCJWAY2FCuNC4OWjLQ7E3gn7cspP5-Buuhem4YeYLbg5y_DjtTPwS2237klDpfa8QW6jKDrlbVjlvrm-QqdtvDPIUMIblPZ3j3t7QXuuQHAeRTQKEIVzGxXa7bK0ccQNV4lQatsg2mAytVylTDElQqskzu62SBGji9gknDLMFkZY7jN4zkSYusMisqN7wirnD3h2v4gHqWDJlCYypFuPv_cRoH0Ii_281n8Fv6Y90oSz_Nic1MWmuvmLLPJ_6rLXsNiCbNJtrOINzJnyLSw8oF58B-fDqka_4Wxy8fv2J-qo03ZN-rIYtYuYpLJkUNaYGvWYZMaHvZCzkgyrUTUZk54cFWixBEE_2W3OEvJLYddYJ-kdUnLkSHFdSe_h5Eka-wHmy6o0S0BQEYy1KZPUIHRL4xTxl9bok_NEciywAytTNcjbwWOc09gxBDng14HPs9do9u5fjiwNNhLToCMdOyqeDlAv8_yyoSfJGyJqmjtp5zNp593sW3d2t_wvmT7Bi2HWz78ODvY_wkv3uIlqXIH5ejQxq4jO6mLNGwSB70-tTn8AdTlAJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potassium-Assisted+Fabrication+of+Intrinsic+Defects+in+Porous+Carbons+for+Electrocatalytic+CO2+Reduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ling%2C+Li-Li&rft.au=Jiao%2C+Long&rft.au=Liu%2C+Xiaoshuo&rft.au=Dong%2C+Yun&rft.date=2022-10-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=42&rft.spage=e2205933&rft_id=info:doi/10.1002%2Fadma.202205933&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon