Potassium‐Assisted Fabrication of Intrinsic Defects in Porous Carbons for Electrocatalytic CO2 Reduction
The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C) with abundant intrinsic defects and complete...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 42; pp. e2205933 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+‐confined metal–organic frameworks (MOFs). Positron‐annihilation lifetime spectroscopy, X‐ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12‐vacancy‐type carbon defects (V12) in K‐defect‐C. Remarkably, the K‐defect‐C achieves ultrahigh CO Faradaic efficiency (99%) at −0.45 V in CO2 electroreduction, far surpassing MOF‐derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K‐defect‐C favor CO2 adsorption and significantly accelerate the formation of the rate‐determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis.
A K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C‐1100) with abundant 12‐vacancy‐type (V12) carbon defects via direct pyrolysis of a K+‐confined metal–organic framework (K+@bio‐MOF‐1) at 1100 °C. Strikingly, the K‐defect‐C‐1100 presents excellent electrocatalytic CO2 reduction activity with ultrahigh CO Faradic efficiency up to 99% at −0.45 V, far surpassing the N‐doped carbon (N‐C‐1100) counterpart. |
---|---|
AbstractList | The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+‐confined metal–organic frameworks (MOFs). Positron‐annihilation lifetime spectroscopy, X‐ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12‐vacancy‐type carbon defects (V12) in K‐defect‐C. Remarkably, the K‐defect‐C achieves ultrahigh CO Faradaic efficiency (99%) at −0.45 V in CO2 electroreduction, far surpassing MOF‐derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K‐defect‐C favor CO2 adsorption and significantly accelerate the formation of the rate‐determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis. The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+‐confined metal–organic frameworks (MOFs). Positron‐annihilation lifetime spectroscopy, X‐ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12‐vacancy‐type carbon defects (V12) in K‐defect‐C. Remarkably, the K‐defect‐C achieves ultrahigh CO Faradaic efficiency (99%) at −0.45 V in CO2 electroreduction, far surpassing MOF‐derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K‐defect‐C favor CO2 adsorption and significantly accelerate the formation of the rate‐determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis. A K+‐assisted synthetic strategy is developed to afford porous carbon (K‐defect‐C‐1100) with abundant 12‐vacancy‐type (V12) carbon defects via direct pyrolysis of a K+‐confined metal–organic framework (K+@bio‐MOF‐1) at 1100 °C. Strikingly, the K‐defect‐C‐1100 presents excellent electrocatalytic CO2 reduction activity with ultrahigh CO Faradic efficiency up to 99% at −0.45 V, far surpassing the N‐doped carbon (N‐C‐1100) counterpart. The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+ -assisted synthetic strategy is developed to afford porous carbon (K-defect-C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+ -confined metal-organic frameworks (MOFs). Positron-annihilation lifetime spectroscopy, X-ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12-vacancy-type carbon defects (V12 ) in K-defect-C. Remarkably, the K-defect-C achieves ultrahigh CO Faradaic efficiency (99%) at -0.45 V in CO2 electroreduction, far surpassing MOF-derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K-defect-C favor CO2 adsorption and significantly accelerate the formation of the rate-determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis.The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+ -assisted synthetic strategy is developed to afford porous carbon (K-defect-C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+ -confined metal-organic frameworks (MOFs). Positron-annihilation lifetime spectroscopy, X-ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12-vacancy-type carbon defects (V12 ) in K-defect-C. Remarkably, the K-defect-C achieves ultrahigh CO Faradaic efficiency (99%) at -0.45 V in CO2 electroreduction, far surpassing MOF-derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K-defect-C favor CO2 adsorption and significantly accelerate the formation of the rate-determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis. |
Author | Yang, Weijie Jiao, Long Ye, Bangjiao Zhang, Hongjun Dong, Yun Chen, Jun Jiang, Hai‐Long Liu, Xiaoshuo Ling, Li‐Li |
Author_xml | – sequence: 1 givenname: Li‐Li surname: Ling fullname: Ling, Li‐Li organization: University of Science and Technology of China – sequence: 2 givenname: Long surname: Jiao fullname: Jiao, Long organization: University of Science and Technology of China – sequence: 3 givenname: Xiaoshuo surname: Liu fullname: Liu, Xiaoshuo organization: Southeast University – sequence: 4 givenname: Yun surname: Dong fullname: Dong, Yun organization: University of Science and Technology of China – sequence: 5 givenname: Weijie surname: Yang fullname: Yang, Weijie organization: North China Electric Power University – sequence: 6 givenname: Hongjun surname: Zhang fullname: Zhang, Hongjun email: hjzhang8@ustc.edu.cn organization: University of Science and Technology of China – sequence: 7 givenname: Bangjiao surname: Ye fullname: Ye, Bangjiao organization: University of Science and Technology of China – sequence: 8 givenname: Jun surname: Chen fullname: Chen, Jun organization: University of Wollongong – sequence: 9 givenname: Hai‐Long orcidid: 0000-0002-2975-7977 surname: Jiang fullname: Jiang, Hai‐Long email: jianglab@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNpdkM1KAzEUhYNUsFa3rgNu3Ey9SSaTybL0RwuKIroe0jSBlGlSkxmkOx_BZ_RJTKm4cHXv5X7ncDjnaOCDNwhdERgTAHqr1ls1pkApcMnYCRoSTklRguQDNATJeCGrsj5D5yltAEBWUA3R5jl0KiXXb78_vyZ5SZ1Z44VaRadV54LHweKl76LzyWk8M9boLmHn8XOIoU94quIq-IRtiHje5mcMWajafZfx6RPFL2bd64PTBTq1qk3m8neO0Nti_jq9Lx6e7pbTyUOxYYyyghLBLVutS1ETKxg3XNeV1sRITkolLdey1KWuwGpFBbMrWdK6EqbmtMwyYCN0c_TdxfDem9Q1W5e0aVvlTU7cUAEEBBOVyOj1P3QT-uhzukzRinGgNcuUPFIfrjX7ZhfdVsV9Q6A59N4cem_-em8ms8fJ38V-AP1je58 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202205933 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202205933 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21725101; 22161142001; 22001242; 11975225 – fundername: Fundamental Research Funds for the Central Universities funderid: WK2060000040; WK2060000038 – fundername: National Key Research and Development Program of China funderid: 2021YFA1500400 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-j3323-2175f3bd4781f735e5c86cc1e9514a9f5c94c4c60fca273fb942867e85243bd03 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 23:59:42 EDT 2025 Fri Jul 25 08:07:40 EDT 2025 Wed Jan 22 16:22:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j3323-2175f3bd4781f735e5c86cc1e9514a9f5c94c4c60fca273fb942867e85243bd03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2975-7977 |
PQID | 2726350283 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2701073767 proquest_journals_2726350283 wiley_primary_10_1002_adma_202205933_ADMA202205933 |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2008 2017 2017 2018 2022; 130 29 50 362 12 2019 2012; 146 22 2021 2021 2014; 182 181 8 2015 2012; 115 3 2019 2021 2021; 58 143 60 2019 2014; 3 5 2019; 31 2019; 52 2013 2019 2017 2016 2018 2018 2018; 341 48 50 28 30 31 30 2010 2018 2011; 5 47 5 2015 2019 2019; 5 58 2 2012 2018 2016; 24 30 28 2020 2009 2014; 120 323 53 2019 2020; 13 32 2020; 13 2020 2017; 59 139 2009 2010; 131 132 1999; 82 2021 2012 2019; 50 51 31 |
References_xml | – volume: 3 5 start-page: 584 3783 year: 2019 2014 publication-title: Joule Nat. Commun. – volume: 24 30 28 start-page: 5593 9532 year: 2012 2018 2016 publication-title: Adv. Mater. Adv. Mater. Adv. Mater. – volume: 146 22 start-page: 610 year: 2019 2012 publication-title: Carbon J. Mater. Chem. – volume: 115 3 start-page: 4823 1298 year: 2015 2012 publication-title: Chem. Rev. Nat. Commun. – volume: 50 51 31 year: 2021 2012 2019 publication-title: Chem. Soc. Rev. Angew. Chem., Int. Ed. Adv. Mater. – volume: 341 48 50 28 30 31 30 start-page: 2783 805 8819 year: 2013 2019 2017 2016 2018 2018 2018 publication-title: Science Chem. Soc. Rev. Acc. Chem. Res. Adv. Mater. Adv. Mater. Adv. Mater. Adv. Mater. – volume: 120 323 53 start-page: 9363 760 7409 year: 2020 2009 2014 publication-title: Chem. Rev. Science Angew. Chem., Int. Ed. – volume: 5 47 5 start-page: 326 7628 26 year: 2010 2018 2011 publication-title: Nat. Nanotechnol. Chem. Soc. Rev. ACS Nano – volume: 52 start-page: 1721 year: 2019 publication-title: Acc. Chem. Res. – volume: 5 58 2 start-page: 6707 1031 688 year: 2015 2019 2019 publication-title: ACS Catal. Angew. Chem., Int. Ed. Nat. Catal. – volume: 59 139 start-page: 8329 year: 2020 2017 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 130 29 50 362 12 start-page: 5390 2684 1 year: 2008 2017 2017 2018 2022 publication-title: J. Am. Chem. Soc. Adv. Mater. Acc. Chem. Res. Coord. Chem. Rev. Adv. Energy Mater. – volume: 13 32 start-page: 1574 year: 2019 2020 publication-title: ACS Nano Adv. Mater. – volume: 13 start-page: 2839 year: 2020 publication-title: Energy Environ. Sci. – volume: 58 143 60 start-page: 6972 year: 2019 2021 2021 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 131 132 start-page: 8376 5578 year: 2009 2010 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 182 181 8 start-page: 559 270 5069 year: 2021 2021 2014 publication-title: Carbon Carbon ACS Nano – volume: 82 start-page: 2532 year: 1999 publication-title: Phys. Rev. Lett. |
SSID | ssj0009606 |
Score | 2.6407032 |
Snippet | The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2205933 |
SubjectTerms | Carbon dioxide Catalysis CO 2 conversion Defects electrocatalysis Fine structure Materials science Metal-organic frameworks porous carbon Pyrolysis Scanning transmission electron microscopy |
Title | Potassium‐Assisted Fabrication of Intrinsic Defects in Porous Carbons for Electrocatalytic CO2 Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202205933 https://www.proquest.com/docview/2726350283 https://www.proquest.com/docview/2701073767 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCjMSaNjh2HmPVhwoSUFVU6hbZji21iAS16QATP4HfyC_h7KRpywhDpESxndh353zn3H1G6EaqJBSKckfKRDlUu4kT-oF0SOBLNxA-HDba4tHvj-j9mI3XsvgLfohqwc1Yhp2vjYFzMW-uSEN5YnmDTKIoOOUwCZuALYOKhiv-KAPPLdmex5zIp-GStdElzc3qG_hyHaXaz0xvH_HlCxbRJS-NRS4a8uMXd-N_enCA9koMiluF0hyiLZUeod01ZsJjNB1kOcDqyeL1-_MLRGiUIcE9LmblGh_ONL5LcygNYsYdZaNC8CTFg2yWLea4zWcCFBoDJsbdYqsdu1L0Ds_E7SeCh4Yz1rR0gka97nO775TbMjhTzyOeA04M055ITJKqDjymmAx9KW8VgDXKI81kRCWVvqslB3CkRQQujh-okBEK1VzvFG2nWarOEAbBKK0jyokCZBMFEcCTJAGXlYWcQYM1VF-KJS5tax6TwBDoGFxUQ9fVbbAK86uDpwo6CWXAzwwMU00NESuD-K1g74gLnmYSm9GPq9GPW52HVnV1_pdKF2jHnBeRfnW0nc8W6hIQSy6urFb-AJXs5Qg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BPUAPbfmpui0trgTHQHDs_Bx6WO2y2uWvCIHELTiOLS0VCdrNqqKnPkJfpa_SR-iTdMbJLtAjEgcOOSSxndgzE38zGX8G2NQmjzMjlKd1bjxh_dyLw0h7PAq1H2UhHi7b4jjsn4v9C3kxB7-na2FqfohZwI0sw32vycApIL1zxxqqckccRCtF0Stv8ioPzO139NrGXwZdFPEW5729s07fazYW8K6CgAcewnBpgyynZZY2CqSROg613jUIN4RKrNSJ0EKHvtUKp3ebJQjSw8jEkgus5gfY7jy8oG3Eia6_e3rHWEUOgaP3C6SXhCKe8kT6fOfh-z5AtPdxsZvYeq_hz3RI6nyWb9uTKtvWP_5ji3xWY_YGXjUwm7Vru1iGOVOswMt75IurcHVSVug5DCfXf3_-Qi0lfc9ZT2WjJozJSssGRYWlUZNZ17jEFzYs2Ek5Kidj1lGjDG2WIexne_VuQi4YdovPZJ2vnJ0SLS61tAbnT9LZt7BQlIV5Bww1wVibCMUNgrckShCB5Tl65TJWEhtswfpUD9Lm8zFOeUQcQQT9WvB5dhsNn_7mqMJgJ7EMutIRkfG0gDuhpzc1QUlaU1HzlKSdzqSdtrtH7dnZ-8dU2oDF_tnRYXo4OD74AEt0vU5sXIeFajQxHxGgVdknZxIMLp9an_4BoQNBdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKlXlQP_FUqCuBMdAcGwnOXBYbVixpYUVAolb6vhHgooE7WaF4MQj9FF4lb5Cn6RjJ7tAj5U49JBDEv_Enhn7G2f8GWBdGZ0UhslAKW0CZkMdJCJWAY2FCuNC4OWjLQ7E3gn7cspP5-Buuhem4YeYLbg5y_DjtTPwS2237klDpfa8QW6jKDrlbVjlvrm-QqdtvDPIUMIblPZ3j3t7QXuuQHAeRTQKEIVzGxXa7bK0ccQNV4lQatsg2mAytVylTDElQqskzu62SBGji9gknDLMFkZY7jN4zkSYusMisqN7wirnD3h2v4gHqWDJlCYypFuPv_cRoH0Ii_281n8Fv6Y90oSz_Nic1MWmuvmLLPJ_6rLXsNiCbNJtrOINzJnyLSw8oF58B-fDqka_4Wxy8fv2J-qo03ZN-rIYtYuYpLJkUNaYGvWYZMaHvZCzkgyrUTUZk54cFWixBEE_2W3OEvJLYddYJ-kdUnLkSHFdSe_h5Eka-wHmy6o0S0BQEYy1KZPUIHRL4xTxl9bok_NEciywAytTNcjbwWOc09gxBDng14HPs9do9u5fjiwNNhLToCMdOyqeDlAv8_yyoSfJGyJqmjtp5zNp593sW3d2t_wvmT7Bi2HWz78ODvY_wkv3uIlqXIH5ejQxq4jO6mLNGwSB70-tTn8AdTlAJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potassium-Assisted+Fabrication+of+Intrinsic+Defects+in+Porous+Carbons+for+Electrocatalytic+CO2+Reduction&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ling%2C+Li-Li&rft.au=Jiao%2C+Long&rft.au=Liu%2C+Xiaoshuo&rft.au=Dong%2C+Yun&rft.date=2022-10-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=42&rft.spage=e2205933&rft_id=info:doi/10.1002%2Fadma.202205933&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |