Stacking‐Order‐Driven Optical Properties and Carrier Dynamics in ReS2

Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligib...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 22; pp. e1908311 - n/a
Main Authors Zhou, Yongjian, Maity, Nikhilesh, Rai, Amritesh, Juneja, Rinkle, Meng, Xianghai, Roy, Anupam, Zhang, Yanyao, Xu, Xiaochuan, Lin, Jung‐Fu, Banerjee, Sanjay K., Singh, Abhishek K., Wang, Yaguo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one‐unit cell displacement along the a axis. First‐principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1 for AA stacking, and 20 cm−1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking‐order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order. Two stacking orders of ReS2 are identified. Stacking AA has negligible displacement across layers and stacking AB has a one‐unit cell displacement along the a‐axis. AB stacking has stronger interlayer coupling than AA. The cross‐layer displacement in AB stacking disrupts excited‐state excitons. Vibrational, optical properties and carrier dynamics in two stacking orders are drastically different.
AbstractList Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one‐unit cell displacement along the a axis. First‐principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1 for AA stacking, and 20 cm−1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking‐order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.
Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one-unit cell displacement along the a axis. First-principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm-1 for AA stacking, and 20 cm-1 for AB stacking, making a simple tool for determining the stacking orders in ReS2 . Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump-probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking-order driven optical properties and carrier dynamics of ReS2 , mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one-unit cell displacement along the a axis. First-principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm-1 for AA stacking, and 20 cm-1 for AB stacking, making a simple tool for determining the stacking orders in ReS2 . Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump-probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking-order driven optical properties and carrier dynamics of ReS2 , mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.
Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one‐unit cell displacement along the a axis. First‐principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1 for AA stacking, and 20 cm−1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking‐order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order. Two stacking orders of ReS2 are identified. Stacking AA has negligible displacement across layers and stacking AB has a one‐unit cell displacement along the a‐axis. AB stacking has stronger interlayer coupling than AA. The cross‐layer displacement in AB stacking disrupts excited‐state excitons. Vibrational, optical properties and carrier dynamics in two stacking orders are drastically different.
Author Juneja, Rinkle
Banerjee, Sanjay K.
Singh, Abhishek K.
Zhou, Yongjian
Roy, Anupam
Rai, Amritesh
Meng, Xianghai
Wang, Yaguo
Lin, Jung‐Fu
Maity, Nikhilesh
Zhang, Yanyao
Xu, Xiaochuan
Author_xml – sequence: 1
  givenname: Yongjian
  orcidid: 0000-0001-9204-1042
  surname: Zhou
  fullname: Zhou, Yongjian
  organization: The University of Texas at Austin
– sequence: 2
  givenname: Nikhilesh
  surname: Maity
  fullname: Maity, Nikhilesh
  organization: Indian Institute of Science
– sequence: 3
  givenname: Amritesh
  surname: Rai
  fullname: Rai, Amritesh
  organization: The University of Texas at Austin
– sequence: 4
  givenname: Rinkle
  surname: Juneja
  fullname: Juneja, Rinkle
  organization: Indian Institute of Science
– sequence: 5
  givenname: Xianghai
  surname: Meng
  fullname: Meng, Xianghai
  organization: The University of Texas at Austin
– sequence: 6
  givenname: Anupam
  surname: Roy
  fullname: Roy, Anupam
  organization: The University of Texas at Austin
– sequence: 7
  givenname: Yanyao
  surname: Zhang
  fullname: Zhang, Yanyao
  organization: The University of Texas at Austin
– sequence: 8
  givenname: Xiaochuan
  surname: Xu
  fullname: Xu, Xiaochuan
  organization: Harbin Institute of Technology
– sequence: 9
  givenname: Jung‐Fu
  surname: Lin
  fullname: Lin, Jung‐Fu
  organization: The University of Texas at Austin
– sequence: 10
  givenname: Sanjay K.
  surname: Banerjee
  fullname: Banerjee, Sanjay K.
  organization: The University of Texas at Austin
– sequence: 11
  givenname: Abhishek K.
  surname: Singh
  fullname: Singh, Abhishek K.
  email: abhishek@iisc.ac.in
  organization: Indian Institute of Science
– sequence: 12
  givenname: Yaguo
  surname: Wang
  fullname: Wang, Yaguo
  email: yaguo.wang@austin.utexas.edu
  organization: The University of Texas at Austin
BookMark eNpdkL1OwzAURi1UJNrCyhyJhaXl-ieJPVYtP5WKiijMlhM7yCVxgp2CuvEIPCNPQkpRB6ZPVzq6OjoD1HO1MwidYxhjAHKldKXGBLAATjE-Qn0cEzxiIOIe6oOg8UgkjJ-gQQhrABAJJH00X7Uqf7Xu5fvza-m18d3OvH03Llo2rc1VGT34ujG-tSZEyuloqry3xkezrVOVzUNkXfRoVuQUHReqDObsb4fo-eb6aXo3Wixv59PJYrSm9Ncn4zGDnGFVZEQojrlmSZESyjjQIk4EJCrVnCYpZgRAY5URnWqCFcU5zugQXe7_Nr5-25jQysqG3JSlcqbeBEmoYJwngkGHXvxD1_XGu85OEgadBieEdJTYUx-2NFvZeFspv5UY5C6r3GWVh6xyMrufHC76A-trbvM
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201908311
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201908311
Genre article
GrantInformation_xml – fundername: National Science Foundation
– fundername: NASCENT
  funderid: EEC‐1160494
– fundername: Center for Dynamics and Control of Materials
  funderid: DMR‐1720595
– fundername: National Nanotechnology Coordinating Office
  funderid: NNCI‐1542159
– fundername: CAREER
  funderid: CBET‐1351881; CBET‐1707080
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-j3321-40b8540c41afb29a818d46f7234803f56906a7d836714200d1ab2d7d21a31c1b3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 18:02:47 EDT 2025
Fri Jul 25 08:31:02 EDT 2025
Wed Jan 22 16:35:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j3321-40b8540c41afb29a818d46f7234803f56906a7d836714200d1ab2d7d21a31c1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9204-1042
PQID 2408548222
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2394886940
proquest_journals_2408548222
wiley_primary_10_1002_adma_201908311_ADMA201908311
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 14
2015; 15
2015; 14
2019; 9
1997; 81
2019; 11
2004; 383
2019; 56
2015; 10
2016; 10
2017; 29
2015; 107
2010; 81
1999; 60
2015; 9
2016; 16
2011; 5
2014; 89
2011; 7
2018; 7
2018; 6
2014; 5
2001; 317–318
2018; 5
2004; 92
2016; 3
1997; 55
2004; 16
2017; 17
2002; 89
2002; 66
2014; 14
1998; 109
2019; 29
2014; 8
2001; 13
2016; 8
1998; 58
2018; 13
References_xml – volume: 10
  start-page: 1948
  year: 2016
  publication-title: ACS Nano
– volume: 60
  start-page: 1797
  year: 1999
  publication-title: J. Phys. Chem. Solids
– volume: 5
  start-page: 3485
  year: 2018
  publication-title: ACS Photonics
– volume: 10
  start-page: 2752
  year: 2016
  publication-title: ACS Nano
– volume: 15
  start-page: 346
  year: 2015
  publication-title: Nano Lett.
– volume: 89
  year: 2014
  publication-title: Phys. Rev. B
– volume: 66
  year: 2002
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 8324
  year: 2016
  publication-title: Nanoscale
– volume: 16
  start-page: 5937
  year: 2004
  publication-title: J. Phys.: Condens. Matter
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 17
  start-page: 5187
  year: 2017
  publication-title: Nano Lett.
– volume: 5
  start-page: 8760
  year: 2011
  publication-title: ACS Nano
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 5
  start-page: 3252
  year: 2014
  publication-title: Nat. Commun.
– volume: 383
  start-page: 74
  year: 2004
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 202
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 16
  start-page: 1404
  year: 2016
  publication-title: Nano Lett.
– volume: 317–318
  start-page: 222
  year: 2001
  publication-title: J. Alloys Compd.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 7
  start-page: 948
  year: 2011
  publication-title: Nat. Phys.
– volume: 81
  year: 2010
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 5667
  year: 2015
  publication-title: Nano Lett.
– volume: 14
  start-page: 4737
  year: 2002
  publication-title: J. Phys.: Condens. Matter
– volume: 56
  start-page: 641
  year: 2019
  publication-title: Nano Energy
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1578
  year: 2019
  publication-title: Sci. Rep.
– volume: 3
  start-page: 96
  year: 2016
  publication-title: ACS Photonics
– volume: 14
  start-page: 5569
  year: 2014
  publication-title: Nano Lett.
– volume: 58
  year: 1998
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 98
  year: 2018
  publication-title: Light: Sci. Appl.
– volume: 13
  start-page: 183
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 109
  start-page: 19
  year: 1998
  publication-title: Solid State Commun.
– volume: 92
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 264
  year: 2015
  publication-title: Nat. Mater.
– volume: 55
  year: 1997
  publication-title: Phys. Rev. B
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 60
  year: 1999
  publication-title: Phys. Rev. B
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 89
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 6380
  year: 1997
  publication-title: J. Appl. Phys.
– volume: 13
  start-page: 8145
  year: 2001
  publication-title: J. Phys.: Condens. Matter
SSID ssj0009606
Score 2.5394623
Snippet Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e1908311
SubjectTerms 2D materials
carrier dynamics first‐principles calculations
Dynamics
Electronic devices
Excitation spectra
Excitons
Interlayers
Materials science
Optical properties
Photoluminescence
pump–probe
Raman spectra
ReS2
Scanning transmission electron microscopy
Spectrum analysis
Stacking
Unit cell
Title Stacking‐Order‐Driven Optical Properties and Carrier Dynamics in ReS2
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201908311
https://www.proquest.com/docview/2408548222
https://www.proquest.com/docview/2394886940
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbw0kP_jaiaGridbC1XbceCUjQBDEoCbel7bpETQbhx8WTf4J_o3-JfR0M8KinZdmabG99fd--9X2K0C1VUog0MF4kqZ2ghNx4ykCtjApDZeNfRjRUI_ceeXfIHkbhaKOKv-BDlAk38Aw3XoODSzVrrKGhMnXcIBvQYuqKe2HBFqiiwZofBfLcwfZo6AnO4hW10SeN7eZb-nJTpbow0zlAcvWAxeqS9_pirur64xe78T9vcIj2lxoUN4tOc4R2TH6M9jbIhCfo3opQDVn078-vPtA57bE9hZER9ycu_Y2fII0_BR4rlnmKW3IKm9_hdrHF_Qy_5nhgnskpGnbuXlpdb7nrgvdGKYEJpYqtjNMskJkiQtqInjKeRYSy2KdZCGRjGaUx5VHArI-lgVQkjVIS2K-tA0XPUCUf5-YcYd-AXNKU-FoyqowknGhNMxHzwEglqqi2snqydJ1Z4phrDHRLFd2Ul22nhz8ZMjfjhb2HCjvwcMH8KiLOxMmkgHMkBYaZJGDcpDRu0mz3muXZxV8aXaJdAnNtl4Gpocp8ujBXVpDM1bXrdD8LF9he
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOQAHdkShgJG4pk1sZztWLVULXVBpJW6R7TgSIKVV2l448Ql8I1-Cx-nKEU5RlFhKJrO8mXjeIHRHBQ_D2FGWz6lOUFxPWUJBr4xwXaHjX0IkdCN3ul5zyB5e3MVuQuiFyfkhlgU3sAzjr8HAoSBdWbGG8tgQB-mIFlDo7t2Gsd4mq-qvGKQAoBu6PepaoceCBW-jTSqb6zcQ5jpONYGmcYDE4hHz_SXv5dlUlOXHL_bGf73DIdqfw1BczfXmCG2p9BjtrZETnqCWxqESCunfn189IOjUx3oGzhH3xqYCjp-gkp8BJSvmaYxrPIP5d7ieT7mf4NcU99UzOUXDxv2g1rTmgxesN0oJ5JQi0EhOMocngoRcB_WYeYlPKAtsmrhAbsz9OKCe7zBtZrHDBYn9mDj6g0tH0DNUSEepOkfYVoCYJCW25IwKxYlHpKRJGHiO4iIsotJC7NHceiaRoV1jAF2K6HZ5Wes9_MzgqRrN9D001L7HC5ldRMTIOBrn_BxRzsRMIhButBRuVK13qsuzi78sukE7zUGnHbVb3cdLtEsg9TYFmRIqTLOZutL4ZCqujQb-AKVz3Hk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JSsRAEIYbURA9uIujo7bgNZp0dzrJcZg4uM2CC3gLvQVUyAyzXDz5CD6jT2JXZ1aPegohCSSVqq6_K6mvETqnUiSJDowXCWonKCE3njTQKyPDUNr8lxMF3cjNFr9-Zrcv4ctcF3_Jh5gW3CAy3HgNAd7T-eUMGiq04wbZhBZTaO5dYdyPwa_ThxlACvS5o-3R0Es4iyfYRp9cLl6_IDDnZarLM41NJCZ3WP5e8n4xGsoL9fEL3vifR9hCG2MRimul12yjJVPsoPU5NOEuurEqVEEZ_fvzqw14TrtN-zA04nbP1b9xB-r4fQCyYlFoXBd9WP0Op-Ua9wP8WuAH80j20HPj6ql-7Y2XXfDeKCUwo5Sx1XGKBSKXJBE2pWvG84hQFvs0DwFtLCIdUx4FzAaZDoQkOtIksK9bBZLuo-WiW5gDhH0DeklR4ivBqDSCcKIUzZOYB0bIpIKqE6tn49gZZA66xkC4VNDZ9LD1eviUIQrTHdlzaGJHHp4wv4KIM3HWK-kcWclhJhkYN5saN6ulzdp07_AvF52i1U7ayO5vWndHaI3AvNtVY6poedgfmWMrTobyxPnfD0An2zE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking%E2%80%90Order%E2%80%90Driven+Optical+Properties+and+Carrier+Dynamics+in+ReS2&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhou%2C+Yongjian&rft.au=Maity%2C+Nikhilesh&rft.au=Rai%2C+Amritesh&rft.au=Juneja%2C+Rinkle&rft.date=2020-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=22&rft_id=info:doi/10.1002%2Fadma.201908311&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon