Stacking‐Order‐Driven Optical Properties and Carrier Dynamics in ReS2
Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligib...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 22; pp. e1908311 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one‐unit cell displacement along the a axis. First‐principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1 for AA stacking, and 20 cm−1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking‐order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.
Two stacking orders of ReS2 are identified. Stacking AA has negligible displacement across layers and stacking AB has a one‐unit cell displacement along the a‐axis. AB stacking has stronger interlayer coupling than AA. The cross‐layer displacement in AB stacking disrupts excited‐state excitons. Vibrational, optical properties and carrier dynamics in two stacking orders are drastically different. |
---|---|
AbstractList | Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one‐unit cell displacement along the a axis. First‐principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1 for AA stacking, and 20 cm−1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking‐order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order. Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one-unit cell displacement along the a axis. First-principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm-1 for AA stacking, and 20 cm-1 for AB stacking, making a simple tool for determining the stacking orders in ReS2 . Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump-probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking-order driven optical properties and carrier dynamics of ReS2 , mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one-unit cell displacement along the a axis. First-principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm-1 for AA stacking, and 20 cm-1 for AB stacking, making a simple tool for determining the stacking orders in ReS2 . Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump-probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking-order driven optical properties and carrier dynamics of ReS2 , mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order. Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one‐unit cell displacement along the a axis. First‐principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1 for AA stacking, and 20 cm−1 for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular to b axis. The findings underscore the stacking‐order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order. Two stacking orders of ReS2 are identified. Stacking AA has negligible displacement across layers and stacking AB has a one‐unit cell displacement along the a‐axis. AB stacking has stronger interlayer coupling than AA. The cross‐layer displacement in AB stacking disrupts excited‐state excitons. Vibrational, optical properties and carrier dynamics in two stacking orders are drastically different. |
Author | Juneja, Rinkle Banerjee, Sanjay K. Singh, Abhishek K. Zhou, Yongjian Roy, Anupam Rai, Amritesh Meng, Xianghai Wang, Yaguo Lin, Jung‐Fu Maity, Nikhilesh Zhang, Yanyao Xu, Xiaochuan |
Author_xml | – sequence: 1 givenname: Yongjian orcidid: 0000-0001-9204-1042 surname: Zhou fullname: Zhou, Yongjian organization: The University of Texas at Austin – sequence: 2 givenname: Nikhilesh surname: Maity fullname: Maity, Nikhilesh organization: Indian Institute of Science – sequence: 3 givenname: Amritesh surname: Rai fullname: Rai, Amritesh organization: The University of Texas at Austin – sequence: 4 givenname: Rinkle surname: Juneja fullname: Juneja, Rinkle organization: Indian Institute of Science – sequence: 5 givenname: Xianghai surname: Meng fullname: Meng, Xianghai organization: The University of Texas at Austin – sequence: 6 givenname: Anupam surname: Roy fullname: Roy, Anupam organization: The University of Texas at Austin – sequence: 7 givenname: Yanyao surname: Zhang fullname: Zhang, Yanyao organization: The University of Texas at Austin – sequence: 8 givenname: Xiaochuan surname: Xu fullname: Xu, Xiaochuan organization: Harbin Institute of Technology – sequence: 9 givenname: Jung‐Fu surname: Lin fullname: Lin, Jung‐Fu organization: The University of Texas at Austin – sequence: 10 givenname: Sanjay K. surname: Banerjee fullname: Banerjee, Sanjay K. organization: The University of Texas at Austin – sequence: 11 givenname: Abhishek K. surname: Singh fullname: Singh, Abhishek K. email: abhishek@iisc.ac.in organization: Indian Institute of Science – sequence: 12 givenname: Yaguo surname: Wang fullname: Wang, Yaguo email: yaguo.wang@austin.utexas.edu organization: The University of Texas at Austin |
BookMark | eNpdkL1OwzAURi1UJNrCyhyJhaXl-ieJPVYtP5WKiijMlhM7yCVxgp2CuvEIPCNPQkpRB6ZPVzq6OjoD1HO1MwidYxhjAHKldKXGBLAATjE-Qn0cEzxiIOIe6oOg8UgkjJ-gQQhrABAJJH00X7Uqf7Xu5fvza-m18d3OvH03Llo2rc1VGT34ujG-tSZEyuloqry3xkezrVOVzUNkXfRoVuQUHReqDObsb4fo-eb6aXo3Wixv59PJYrSm9Ncn4zGDnGFVZEQojrlmSZESyjjQIk4EJCrVnCYpZgRAY5URnWqCFcU5zugQXe7_Nr5-25jQysqG3JSlcqbeBEmoYJwngkGHXvxD1_XGu85OEgadBieEdJTYUx-2NFvZeFspv5UY5C6r3GWVh6xyMrufHC76A-trbvM |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201908311 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201908311 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation – fundername: NASCENT funderid: EEC‐1160494 – fundername: Center for Dynamics and Control of Materials funderid: DMR‐1720595 – fundername: National Nanotechnology Coordinating Office funderid: NNCI‐1542159 – fundername: CAREER funderid: CBET‐1351881; CBET‐1707080 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-j3321-40b8540c41afb29a818d46f7234803f56906a7d836714200d1ab2d7d21a31c1b3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 18:02:47 EDT 2025 Fri Jul 25 08:31:02 EDT 2025 Wed Jan 22 16:35:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j3321-40b8540c41afb29a818d46f7234803f56906a7d836714200d1ab2d7d21a31c1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9204-1042 |
PQID | 2408548222 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2394886940 proquest_journals_2408548222 wiley_primary_10_1002_adma_201908311_ADMA201908311 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 14 2015; 15 2015; 14 2019; 9 1997; 81 2019; 11 2004; 383 2019; 56 2015; 10 2016; 10 2017; 29 2015; 107 2010; 81 1999; 60 2015; 9 2016; 16 2011; 5 2014; 89 2011; 7 2018; 7 2018; 6 2014; 5 2001; 317–318 2018; 5 2004; 92 2016; 3 1997; 55 2004; 16 2017; 17 2002; 89 2002; 66 2014; 14 1998; 109 2019; 29 2014; 8 2001; 13 2016; 8 1998; 58 2018; 13 |
References_xml | – volume: 10 start-page: 1948 year: 2016 publication-title: ACS Nano – volume: 60 start-page: 1797 year: 1999 publication-title: J. Phys. Chem. Solids – volume: 5 start-page: 3485 year: 2018 publication-title: ACS Photonics – volume: 10 start-page: 2752 year: 2016 publication-title: ACS Nano – volume: 15 start-page: 346 year: 2015 publication-title: Nano Lett. – volume: 89 year: 2014 publication-title: Phys. Rev. B – volume: 66 year: 2002 publication-title: Phys. Rev. B – volume: 8 start-page: 8324 year: 2016 publication-title: Nanoscale – volume: 16 start-page: 5937 year: 2004 publication-title: J. Phys.: Condens. Matter – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 17 start-page: 5187 year: 2017 publication-title: Nano Lett. – volume: 5 start-page: 8760 year: 2011 publication-title: ACS Nano – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 9 year: 2015 publication-title: ACS Nano – volume: 5 start-page: 3252 year: 2014 publication-title: Nat. Commun. – volume: 383 start-page: 74 year: 2004 publication-title: J. Alloys Compd. – volume: 10 start-page: 202 year: 2015 publication-title: Nat. Nanotechnol. – volume: 16 start-page: 1404 year: 2016 publication-title: Nano Lett. – volume: 317–318 start-page: 222 year: 2001 publication-title: J. Alloys Compd. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 7 start-page: 948 year: 2011 publication-title: Nat. Phys. – volume: 81 year: 2010 publication-title: Phys. Rev. B – volume: 15 start-page: 5667 year: 2015 publication-title: Nano Lett. – volume: 14 start-page: 4737 year: 2002 publication-title: J. Phys.: Condens. Matter – volume: 56 start-page: 641 year: 2019 publication-title: Nano Energy – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1578 year: 2019 publication-title: Sci. Rep. – volume: 3 start-page: 96 year: 2016 publication-title: ACS Photonics – volume: 14 start-page: 5569 year: 2014 publication-title: Nano Lett. – volume: 58 year: 1998 publication-title: Phys. Rev. B – volume: 7 start-page: 98 year: 2018 publication-title: Light: Sci. Appl. – volume: 13 start-page: 183 year: 2018 publication-title: Nat. Nanotechnol. – volume: 109 start-page: 19 year: 1998 publication-title: Solid State Commun. – volume: 92 year: 2004 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 264 year: 2015 publication-title: Nat. Mater. – volume: 55 year: 1997 publication-title: Phys. Rev. B – volume: 11 year: 2019 publication-title: Nanoscale – volume: 60 year: 1999 publication-title: Phys. Rev. B – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 89 year: 2002 publication-title: Phys. Rev. Lett. – volume: 81 start-page: 6380 year: 1997 publication-title: J. Appl. Phys. – volume: 13 start-page: 8145 year: 2001 publication-title: J. Phys.: Condens. Matter |
SSID | ssj0009606 |
Score | 2.5394623 |
Snippet | Two distinct stacking orders in ReS2 are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e1908311 |
SubjectTerms | 2D materials carrier dynamics first‐principles calculations Dynamics Electronic devices Excitation spectra Excitons Interlayers Materials science Optical properties Photoluminescence pump–probe Raman spectra ReS2 Scanning transmission electron microscopy Spectrum analysis Stacking Unit cell |
Title | Stacking‐Order‐Driven Optical Properties and Carrier Dynamics in ReS2 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201908311 https://www.proquest.com/docview/2408548222 https://www.proquest.com/docview/2394886940 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbw0kP_jaiaGridbC1XbceCUjQBDEoCbel7bpETQbhx8WTf4J_o3-JfR0M8KinZdmabG99fd--9X2K0C1VUog0MF4kqZ2ghNx4ykCtjApDZeNfRjRUI_ceeXfIHkbhaKOKv-BDlAk38Aw3XoODSzVrrKGhMnXcIBvQYuqKe2HBFqiiwZofBfLcwfZo6AnO4hW10SeN7eZb-nJTpbow0zlAcvWAxeqS9_pirur64xe78T9vcIj2lxoUN4tOc4R2TH6M9jbIhCfo3opQDVn078-vPtA57bE9hZER9ycu_Y2fII0_BR4rlnmKW3IKm9_hdrHF_Qy_5nhgnskpGnbuXlpdb7nrgvdGKYEJpYqtjNMskJkiQtqInjKeRYSy2KdZCGRjGaUx5VHArI-lgVQkjVIS2K-tA0XPUCUf5-YcYd-AXNKU-FoyqowknGhNMxHzwEglqqi2snqydJ1Z4phrDHRLFd2Ul22nhz8ZMjfjhb2HCjvwcMH8KiLOxMmkgHMkBYaZJGDcpDRu0mz3muXZxV8aXaJdAnNtl4Gpocp8ujBXVpDM1bXrdD8LF9he |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOQAHdkShgJG4pk1sZztWLVULXVBpJW6R7TgSIKVV2l448Ql8I1-Cx-nKEU5RlFhKJrO8mXjeIHRHBQ_D2FGWz6lOUFxPWUJBr4xwXaHjX0IkdCN3ul5zyB5e3MVuQuiFyfkhlgU3sAzjr8HAoSBdWbGG8tgQB-mIFlDo7t2Gsd4mq-qvGKQAoBu6PepaoceCBW-jTSqb6zcQ5jpONYGmcYDE4hHz_SXv5dlUlOXHL_bGf73DIdqfw1BczfXmCG2p9BjtrZETnqCWxqESCunfn189IOjUx3oGzhH3xqYCjp-gkp8BJSvmaYxrPIP5d7ieT7mf4NcU99UzOUXDxv2g1rTmgxesN0oJ5JQi0EhOMocngoRcB_WYeYlPKAtsmrhAbsz9OKCe7zBtZrHDBYn9mDj6g0tH0DNUSEepOkfYVoCYJCW25IwKxYlHpKRJGHiO4iIsotJC7NHceiaRoV1jAF2K6HZ5Wes9_MzgqRrN9D001L7HC5ldRMTIOBrn_BxRzsRMIhButBRuVK13qsuzi78sukE7zUGnHbVb3cdLtEsg9TYFmRIqTLOZutL4ZCqujQb-AKVz3Hk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JSsRAEIYbURA9uIujo7bgNZp0dzrJcZg4uM2CC3gLvQVUyAyzXDz5CD6jT2JXZ1aPegohCSSVqq6_K6mvETqnUiSJDowXCWonKCE3njTQKyPDUNr8lxMF3cjNFr9-Zrcv4ctcF3_Jh5gW3CAy3HgNAd7T-eUMGiq04wbZhBZTaO5dYdyPwa_ThxlACvS5o-3R0Es4iyfYRp9cLl6_IDDnZarLM41NJCZ3WP5e8n4xGsoL9fEL3vifR9hCG2MRimul12yjJVPsoPU5NOEuurEqVEEZ_fvzqw14TrtN-zA04nbP1b9xB-r4fQCyYlFoXBd9WP0Op-Ua9wP8WuAH80j20HPj6ql-7Y2XXfDeKCUwo5Sx1XGKBSKXJBE2pWvG84hQFvs0DwFtLCIdUx4FzAaZDoQkOtIksK9bBZLuo-WiW5gDhH0DeklR4ivBqDSCcKIUzZOYB0bIpIKqE6tn49gZZA66xkC4VNDZ9LD1eviUIQrTHdlzaGJHHp4wv4KIM3HWK-kcWclhJhkYN5saN6ulzdp07_AvF52i1U7ayO5vWndHaI3AvNtVY6poedgfmWMrTobyxPnfD0An2zE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking%E2%80%90Order%E2%80%90Driven+Optical+Properties+and+Carrier+Dynamics+in+ReS2&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhou%2C+Yongjian&rft.au=Maity%2C+Nikhilesh&rft.au=Rai%2C+Amritesh&rft.au=Juneja%2C+Rinkle&rft.date=2020-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=22&rft_id=info:doi/10.1002%2Fadma.201908311&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |