CCL7およびCCL25はRANKLによって誘導される破骨細胞形成を促進する
破骨細胞による骨吸収は, その過程において, 造血系細胞である破骨細胞前駆細胞の遊走とRANKL (Receptor activator of NF-kB ligand)による成熟した破骨細胞への分化が必要である。一方, 生理活性物質であるケモカインは造血系細胞に対して走化性を有している。本研究において我々は, RANKL刺激による破骨細胞分化におけるCCL7 (CC chemokine ligand 7; MCP-3 : monocyte chemotactic protein -3) およびCCL25 (CC chemokine ligand 25; TECK : thymus-expre...
Saved in:
Published in | 日本歯周病学会会誌 Vol. 51; no. 1; pp. 51 - 61 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Japanese |
Published |
特定非営利活動法人 日本歯周病学会
2009
日本歯周病学会 |
Subjects | |
Online Access | Get full text |
ISSN | 0385-0110 1880-408X |
DOI | 10.2329/perio.51.051 |
Cover
Abstract | 破骨細胞による骨吸収は, その過程において, 造血系細胞である破骨細胞前駆細胞の遊走とRANKL (Receptor activator of NF-kB ligand)による成熟した破骨細胞への分化が必要である。一方, 生理活性物質であるケモカインは造血系細胞に対して走化性を有している。本研究において我々は, RANKL刺激による破骨細胞分化におけるCCL7 (CC chemokine ligand 7; MCP-3 : monocyte chemotactic protein -3) およびCCL25 (CC chemokine ligand 25; TECK : thymus-expressed chemokine) の作用を解析した。CCL7およびCCL25は, IL-1β, ビタミンD3刺激によりマウス骨髄間質由来細胞であるST2細胞において産生が確認された。一方, CCL7の受容体CCR2 (CC chemokine receptor 2), 並びに, CCL25の受容体CCR9 (CC chemokine receptor 9)は, マウスマクロファージ系細胞株RAW264.7細胞において発現が確認された。そこで, RANKL存在下においてCCL7, CCL25リコンビナント蛋白とともにRAW264.7細胞を培養したところ, 破骨細胞形成が有意に増強された。次に, RANKL存在下において抗CCL7抗体, 抗CCL25抗体とともにRAW264.7細胞を培養したところ, 破骨細胞形成が有意に抑制された。さらに, マウスから分離した骨髄細胞を用いた破骨細胞形成系実験においても同様の結果が得られた。これらの結果より, 細胞遊走を惹起すると知られているCCL7およびCCL25は, RANKLによって誘導される破骨細胞分化, 形成においても重要な役割を担うことが示唆された。 日本歯周病学会会誌(日歯周誌)51(1) : 51-61, 2009 |
---|---|
AbstractList | 「要旨」:破骨細胞による骨吸収は, その過程において, 造血系細胞である破骨細胞前駆細胞の遊走とRANKL(Receptor activator of NF-kB ligand)による成熟した破骨細胞への分化が必要である. 一方, 生理活性物質であるケモカインは造血系細胞に対して走化性を有している. 本研究において我々は, RANKL刺激による破骨細胞分化におけるCCL7(CC chemokine ligand 7;MCP-3:monocyte chemotactic protein-3)およびCCL25(CC chemokine ligand 25;TECK:thymus-expressed chemokine)の作用を解析した. CCL7およびCCL25は, IL-1β, ビタミンD3刺激によりマウス骨髄間質由来細胞であるST2細胞において産生が確認された. 一方, CCL7の受容体CCR2(CC chemokine receptor 2), 並びに, CCL25の受容体CCR9(CC chemokine receptor 9)は, マウスマクロファージ系細胞株RAW264.7細胞において発現が確認された. そこで, RANKL存在下においてCCL7, CCL25リコンビナント蛋白とともにRAW264.7細胞を培養したところ, 破骨細胞形成が有意に増強された. 次に, RANKL存在下において抗CCL7抗体, 抗CCL25抗体とともにRAW264.7細胞を培養したところ, 破骨細胞形成が有意に抑制された. さらに, マウスから分離した骨髄細胞を用いた破骨細胞形成系実験においても同様の結果が得られた. これらの結果より, 細胞遊走を惹起すると知られているCCL7およびCCL25は, RANKLによって誘導される破骨細胞分化, 形成においても重要な役割を担うことが示唆された. 破骨細胞による骨吸収は, その過程において, 造血系細胞である破骨細胞前駆細胞の遊走とRANKL (Receptor activator of NF-kB ligand)による成熟した破骨細胞への分化が必要である。一方, 生理活性物質であるケモカインは造血系細胞に対して走化性を有している。本研究において我々は, RANKL刺激による破骨細胞分化におけるCCL7 (CC chemokine ligand 7; MCP-3 : monocyte chemotactic protein -3) およびCCL25 (CC chemokine ligand 25; TECK : thymus-expressed chemokine) の作用を解析した。CCL7およびCCL25は, IL-1β, ビタミンD3刺激によりマウス骨髄間質由来細胞であるST2細胞において産生が確認された。一方, CCL7の受容体CCR2 (CC chemokine receptor 2), 並びに, CCL25の受容体CCR9 (CC chemokine receptor 9)は, マウスマクロファージ系細胞株RAW264.7細胞において発現が確認された。そこで, RANKL存在下においてCCL7, CCL25リコンビナント蛋白とともにRAW264.7細胞を培養したところ, 破骨細胞形成が有意に増強された。次に, RANKL存在下において抗CCL7抗体, 抗CCL25抗体とともにRAW264.7細胞を培養したところ, 破骨細胞形成が有意に抑制された。さらに, マウスから分離した骨髄細胞を用いた破骨細胞形成系実験においても同様の結果が得られた。これらの結果より, 細胞遊走を惹起すると知られているCCL7およびCCL25は, RANKLによって誘導される破骨細胞分化, 形成においても重要な役割を担うことが示唆された。 日本歯周病学会会誌(日歯周誌)51(1) : 51-61, 2009 |
Author | 岡松, 良昌 臼井, 通彦 林, 幸恵 山本, 松男 |
Author_xml | – sequence: 1 fullname: 岡松, 良昌 organization: 昭和大学病院歯科室 – sequence: 1 fullname: 臼井, 通彦 organization: 昭和大学歯学部歯周病学教室 – sequence: 1 fullname: 林, 幸恵 organization: 昭和大学歯学部歯周病学教室 – sequence: 1 fullname: 山本, 松男 organization: 昭和大学歯学部歯周病学教室 |
BookMark | eNo9UMtKAzEUDaJgfez8jak3SdNMdpbiC4uCqLgbkmlGp4wzZaoLd067ERURQdCNiIKILizarfgxsVb_wlgfm3vuuY9zL2cEDcZJrBGawJAnlIjJuk7DJM9wHhgeQDnsuuAUwF0fRDmgLnMAYxhG441GqADA5QSoyKG1crnCTXZgmvsme7aEMJM9LpcWFyome-hXb0x2-3F_3m0fm-zMNI9M87B31fm8v-t12h-ty-7L9fv-iWmevr22PveeTHZhB8bQUCCjhh7_xVG0OjO9Up5zKkuz8-VSxalR-44jiaCUB0wC4xBoLhWhtKgUKFXgqiCUZljQYuASX1ZZVVFR1aA4J74GHWBOR9HMj-6Wroa-jJI4CmPt1ZKdNLZ3Pb8urC9R4hEA4YG1BrCFYj_9TjABwQquFZr6Eao1tuWG9uppuCXTXU-m26EfWf7trmd38H_4a_mbMvVqkn4B_IaNLQ |
ContentType | Journal Article |
Copyright | 2009 特定非営利活動法人 日本歯周病学会 |
Copyright_xml | – notice: 2009 特定非営利活動法人 日本歯周病学会 |
CorporateAuthor | 昭和大学病院歯科室 昭和大学歯学部歯周病学教室 |
CorporateAuthor_xml | – name: 昭和大学歯学部歯周病学教室 – name: 昭和大学病院歯科室 |
DOI | 10.2329/perio.51.051 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Dentistry |
EISSN | 1880-408X |
EndPage | 61 |
ExternalDocumentID | cp9perlo_2009_005101_006_0051_0061209548 article_perio_51_1_51_1_51_article_char_ja |
GroupedDBID | 123 2WC ABJNI ALMA_UNASSIGNED_HOLDINGS CS3 F5P JSF KQ8 MOJWN OK1 RJT |
ID | FETCH-LOGICAL-j3110-a29337f5a0570fe7ab2336bb0bb47b49be51936f82cad5db39de0b772ce0ef173 |
ISSN | 0385-0110 |
IngestDate | Tue Apr 08 17:06:08 EDT 2025 Wed Sep 03 06:30:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j3110-a29337f5a0570fe7ab2336bb0bb47b49be51936f82cad5db39de0b772ce0ef173 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/perio/51/1/51_1_51/_article/-char/ja |
PageCount | 11 |
ParticipantIDs | medicalonline_journals_cp9perlo_2009_005101_006_0051_0061209548 jstage_primary_article_perio_51_1_51_1_51_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20090000 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – year: 2009 text: 20090000 |
PublicationDecade | 2000 |
PublicationTitle | 日本歯周病学会会誌 |
PublicationTitleAlternate | 日歯周誌 |
PublicationYear | 2009 |
Publisher | 特定非営利活動法人 日本歯周病学会 日本歯周病学会 |
Publisher_xml | – name: 特定非営利活動法人 日本歯周病学会 – name: 日本歯周病学会 |
References | 8) Yu X, Collin-Osdoby P, Osdoby P : SDF-1 increases recruitment of osteoclast precursors by upregulation of matrix metalloproteinase-9 activity. Connect Tissue Res. 44 Suppl 1 : 79-84, 2003. 7) Toh K, Kukita T, Wu Z, Kukita A, Sandra F, Tang QY, Nomiyama H, Iijima T : Possible involvement of MIP-1alpha in the recruitment of osteoclast progenitors to the distal tibia in rats with adjuvant-induced arthritis. Lab Invest. 84 : 1092-1102, 2004. 20) Svensson M, Marsal J, Ericsson A, Carramolino L, Brodén T, Márquez G, Agace WW : CCL25 mediates the localization of recently activated CD8αβ+ lymphocytes to the small-intestinal mucosa. J Clin Invest. 110 : 1113-1121, 2002. 9) Yu X, Huang Y, Collin-Osdoby P, Osdoby P : CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts. J Bone Miner Res. 19 : 2065-2077, 2004. 31) Suda T, Takahashi N, Martin TJ : Modulation of osteoclast differentiation. Endocr Rev 13 : 66-80, 1992. 17) Xu LL, McVicar DW, Ben-Baruch A, Kuhns DB, Johnston J, Oppenheim JJ, Wang JM : Monocyte chemotactic protein-3 (MCP3) interacts with multiple leukocyte receptors : binding and signaling of MCP3 through shared as well as unique receptors on monocytes and neutrophils. Eur J Immunol. 25 : 2612-2617, 1995. 10) Graves DT, Cochran D : The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 74 : 391-401, 2003. 16) Neote K, DiGregorio D, Mak JY, Horuk R, Schall TJ : Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell. 72 : 415-425, 1993. 29) Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC : Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem. 282 : 33098-33106, 2007. 1) Horwood NJ, Kartsogiannis V, Quinn JM, Romas E, Martin TJ, Gillespie MT : Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun. 265 : 144-150, 1999. 21) Wurbel MA, Philippe JM, Nguyen C, Victorero G, Freeman T, Wooding P, Miazek A, Mattei MG, Malissen M, Jordan BR, Malissen B, Carrier A, Naquet P : The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur J Immunol. 30 : 262-271, 2000. 24) Ekhlassi S, Scruggs LY, Garza T, Montufar-Solis D, Moretti AJ, Klein JR : Porphyromonas gingivalis lipopolysaccharide induces tumor necrosis factor-a and interleukin-6 secretion, and CCL25 gene expression, in mouse primary gingival cell lines : interleukin-6-driven activation of CCL2. J Periodont Res. 43 : 431-439, 2008. 13) Hanazawa S, Kawata Y, Takeshita A, Kumada H, Okithu M, Tanaka S, Yamamoto Y, Masuda T, Umemoto T, Kitano S : Expression of monocyte chemoattractant protein 1 (MCP-1) in adult periodontal disease : increased monocyte chemotactic activity in crevicular fluids and induction of MCP-1 expression in gingival tissues. Infect Immun. 61 : 5219-5224, 1993. 14) Damme VJ, Proost P, Lenaerts JP, Opdenakker G : Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med. 176 : 59-65, 1992. 11) Tonetti MS, Imboden MA, Gerber L, Lang NP, Laissue J, Mueller C : Localized expression of mRNA for phagocyte-specific chemotactic cytokines in human periodontal infections. Infect Immun. 62 : 4005-4014, 1994. 15) Coillie V, Damme JV, Opdenakker G : The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev. 10 : 61-86, 1999. 19) Shao H, Wilkinson B, Lee B, Han PC, Kaye J : Slowaccumulation of active mitogen-activated protein kinase during thymocyte differentiation regulates the temporal pattern of transcription factor gene expression. J Immunol. 163 : 603-610, 1999. 12) Tsai CC, Ho YP, Chen CC : Levels of interleukin-1 beta and interleukin-8 in gingival crevicular fluids in adult periodontitis. J Periodontol. 66 : 852-859, 1995. 3) Usui M, Xing L, Drissi H, Zuscik M, O'Keefe R, Chen D, Boyce BF : Murine and chicken chondrocytes regulate osteoclastogenesis by producing RANKL in response to BMP2. J Bone Miner Res. 23 : 314-325, 2008. 23) Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI, Ebert EC, Kassam N, Qin S, Zovko M, LaRosa GJ, Yang LL, Soler D, Butcher EC, Ponath PD, Parker CM, Andrew DP : Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med. 190 : 1241-1256, 1999. 27) Sozzani S, Zhou D, Locati M, Rieppi M, Proost P, Magazin M, Vita N, Damme JV, Mantovani A : Receptors and transduction pathways for monocyte chemotactic protein-2 and monocyte chemotactic protein-3. Similarities and differences with MCP-1. J Immunol 152 : 3615-3622, 1994. 4) Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Marony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM : OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 397 : 315-323, 1999. 26) Okamatsu Y, Kim D, Battaglino R, Sasaki H, Spate U, Stashenko P : MIP-1 gamma promotes receptor activator of NF-kB ligand-induced osteoclast formation and survival. J Immunol. 173 : 2084-2090, 2004. 5) Tsukii K, Shima N, Mochizuki S, Yamaguchi K, Kinosaki M, Yano K, Shibata O, Udagawa N, Yasuda H, Suda T, Higashio K : Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha, 25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem Biophys Res Commun. 246 : 337-341, 1998. 18) Vicari AP, Figueroa DJ, Hedrick JA, Foster JS, Singh KP, Menon S, Copeland NG, Gilbert DJ, Jenkins NA, Bacon KB, Zlotnik A : TECK : a novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity. 7 : 291-301, 1997. 22) Yu CR, Peden KW, Zaitseva MB, Golding H, Farber JM : CCR9A and CCR9B : two receptors for the chemokine CCL25/TECK/Ck beta-15 that differ in their sensitivities to ligand. J Immunol. 164 : 1293-1305, 2000. 6) Lu Y, Cai Z, Xiao G, Keller ET, Mizokami A, Yao Z, Roodman GD, Zhang J : Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res. 67 : 3646-3653, 2007. 28) Lean JM, Murphy C, Fuller K, Chambers TJ : CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J Cell Biochem. 87 : 386-393, 2002. 2) Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM : Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 402 : 304-309, 1999. 30) Reddy SV, Roodman GD : Control of osteoclast differentiation. Crit Rev Eukaryot Gene Expr 8 : 1-17, 1998. 25) Suda T, Ueno Y, Fujii K, Shinki T : Vitamin D and bone. J Cell Biochem 88 : 259-266, 2003. |
References_xml | – reference: 4) Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Marony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM : OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 397 : 315-323, 1999. – reference: 21) Wurbel MA, Philippe JM, Nguyen C, Victorero G, Freeman T, Wooding P, Miazek A, Mattei MG, Malissen M, Jordan BR, Malissen B, Carrier A, Naquet P : The chemokine TECK is expressed by thymic and intestinal epithelial cells and attracts double- and single-positive thymocytes expressing the TECK receptor CCR9. Eur J Immunol. 30 : 262-271, 2000. – reference: 16) Neote K, DiGregorio D, Mak JY, Horuk R, Schall TJ : Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell. 72 : 415-425, 1993. – reference: 6) Lu Y, Cai Z, Xiao G, Keller ET, Mizokami A, Yao Z, Roodman GD, Zhang J : Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res. 67 : 3646-3653, 2007. – reference: 31) Suda T, Takahashi N, Martin TJ : Modulation of osteoclast differentiation. Endocr Rev 13 : 66-80, 1992. – reference: 8) Yu X, Collin-Osdoby P, Osdoby P : SDF-1 increases recruitment of osteoclast precursors by upregulation of matrix metalloproteinase-9 activity. Connect Tissue Res. 44 Suppl 1 : 79-84, 2003. – reference: 23) Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI, Ebert EC, Kassam N, Qin S, Zovko M, LaRosa GJ, Yang LL, Soler D, Butcher EC, Ponath PD, Parker CM, Andrew DP : Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med. 190 : 1241-1256, 1999. – reference: 20) Svensson M, Marsal J, Ericsson A, Carramolino L, Brodén T, Márquez G, Agace WW : CCL25 mediates the localization of recently activated CD8αβ+ lymphocytes to the small-intestinal mucosa. J Clin Invest. 110 : 1113-1121, 2002. – reference: 14) Damme VJ, Proost P, Lenaerts JP, Opdenakker G : Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family. J Exp Med. 176 : 59-65, 1992. – reference: 11) Tonetti MS, Imboden MA, Gerber L, Lang NP, Laissue J, Mueller C : Localized expression of mRNA for phagocyte-specific chemotactic cytokines in human periodontal infections. Infect Immun. 62 : 4005-4014, 1994. – reference: 22) Yu CR, Peden KW, Zaitseva MB, Golding H, Farber JM : CCR9A and CCR9B : two receptors for the chemokine CCL25/TECK/Ck beta-15 that differ in their sensitivities to ligand. J Immunol. 164 : 1293-1305, 2000. – reference: 12) Tsai CC, Ho YP, Chen CC : Levels of interleukin-1 beta and interleukin-8 in gingival crevicular fluids in adult periodontitis. J Periodontol. 66 : 852-859, 1995. – reference: 19) Shao H, Wilkinson B, Lee B, Han PC, Kaye J : Slowaccumulation of active mitogen-activated protein kinase during thymocyte differentiation regulates the temporal pattern of transcription factor gene expression. J Immunol. 163 : 603-610, 1999. – reference: 17) Xu LL, McVicar DW, Ben-Baruch A, Kuhns DB, Johnston J, Oppenheim JJ, Wang JM : Monocyte chemotactic protein-3 (MCP3) interacts with multiple leukocyte receptors : binding and signaling of MCP3 through shared as well as unique receptors on monocytes and neutrophils. Eur J Immunol. 25 : 2612-2617, 1995. – reference: 3) Usui M, Xing L, Drissi H, Zuscik M, O'Keefe R, Chen D, Boyce BF : Murine and chicken chondrocytes regulate osteoclastogenesis by producing RANKL in response to BMP2. J Bone Miner Res. 23 : 314-325, 2008. – reference: 2) Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Lacey DL, Fish E, Boyle WJ, Penninger JM : Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 402 : 304-309, 1999. – reference: 28) Lean JM, Murphy C, Fuller K, Chambers TJ : CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J Cell Biochem. 87 : 386-393, 2002. – reference: 9) Yu X, Huang Y, Collin-Osdoby P, Osdoby P : CCR1 chemokines promote the chemotactic recruitment, RANKL development, and motility of osteoclasts and are induced by inflammatory cytokines in osteoblasts. J Bone Miner Res. 19 : 2065-2077, 2004. – reference: 26) Okamatsu Y, Kim D, Battaglino R, Sasaki H, Spate U, Stashenko P : MIP-1 gamma promotes receptor activator of NF-kB ligand-induced osteoclast formation and survival. J Immunol. 173 : 2084-2090, 2004. – reference: 29) Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC : Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem. 282 : 33098-33106, 2007. – reference: 10) Graves DT, Cochran D : The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 74 : 391-401, 2003. – reference: 18) Vicari AP, Figueroa DJ, Hedrick JA, Foster JS, Singh KP, Menon S, Copeland NG, Gilbert DJ, Jenkins NA, Bacon KB, Zlotnik A : TECK : a novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity. 7 : 291-301, 1997. – reference: 27) Sozzani S, Zhou D, Locati M, Rieppi M, Proost P, Magazin M, Vita N, Damme JV, Mantovani A : Receptors and transduction pathways for monocyte chemotactic protein-2 and monocyte chemotactic protein-3. Similarities and differences with MCP-1. J Immunol 152 : 3615-3622, 1994. – reference: 7) Toh K, Kukita T, Wu Z, Kukita A, Sandra F, Tang QY, Nomiyama H, Iijima T : Possible involvement of MIP-1alpha in the recruitment of osteoclast progenitors to the distal tibia in rats with adjuvant-induced arthritis. Lab Invest. 84 : 1092-1102, 2004. – reference: 5) Tsukii K, Shima N, Mochizuki S, Yamaguchi K, Kinosaki M, Yano K, Shibata O, Udagawa N, Yasuda H, Suda T, Higashio K : Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha, 25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem Biophys Res Commun. 246 : 337-341, 1998. – reference: 24) Ekhlassi S, Scruggs LY, Garza T, Montufar-Solis D, Moretti AJ, Klein JR : Porphyromonas gingivalis lipopolysaccharide induces tumor necrosis factor-a and interleukin-6 secretion, and CCL25 gene expression, in mouse primary gingival cell lines : interleukin-6-driven activation of CCL2. J Periodont Res. 43 : 431-439, 2008. – reference: 30) Reddy SV, Roodman GD : Control of osteoclast differentiation. Crit Rev Eukaryot Gene Expr 8 : 1-17, 1998. – reference: 13) Hanazawa S, Kawata Y, Takeshita A, Kumada H, Okithu M, Tanaka S, Yamamoto Y, Masuda T, Umemoto T, Kitano S : Expression of monocyte chemoattractant protein 1 (MCP-1) in adult periodontal disease : increased monocyte chemotactic activity in crevicular fluids and induction of MCP-1 expression in gingival tissues. Infect Immun. 61 : 5219-5224, 1993. – reference: 1) Horwood NJ, Kartsogiannis V, Quinn JM, Romas E, Martin TJ, Gillespie MT : Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun. 265 : 144-150, 1999. – reference: 25) Suda T, Ueno Y, Fujii K, Shinki T : Vitamin D and bone. J Cell Biochem 88 : 259-266, 2003. – reference: 15) Coillie V, Damme JV, Opdenakker G : The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev. 10 : 61-86, 1999. |
SSID | ssib000872039 ssib023160750 ssib002822002 ssib005901892 ssj0041828 ssib002484695 ssib005880044 ssib004298385 |
Score | 1.7549127 |
Snippet | 破骨細胞による骨吸収は, その過程において, 造血系細胞である破骨細胞前駆細胞の遊走とRANKL (Receptor activator of NF-kB ligand)による成熟した破骨細胞への分化が必要である。一方, 生理活性物質であるケモカインは造血系細胞に対して走化性を有している。本研究において我々は,... 「要旨」:破骨細胞による骨吸収は, その過程において, 造血系細胞である破骨細胞前駆細胞の遊走とRANKL(Receptor activator of NF-kB ligand)による成熟した破骨細胞への分化が必要である. 一方, 生理活性物質であるケモカインは造血系細胞に対して走化性を有している.... |
SourceID | medicalonline jstage |
SourceType | Publisher |
StartPage | 51 |
SubjectTerms | ケモカイン ケモカインレセプター 破骨細胞 骨芽細胞 |
Title | CCL7およびCCL25はRANKLによって誘導される破骨細胞形成を促進する |
URI | https://www.jstage.jst.go.jp/article/perio/51/1/51_1_51/_article/-char/ja http://mol.medicalonline.jp/en/journal/download?GoodsID=cp9perlo/2009/005101/006&name=0051-0061j |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 日本歯周病学会会誌, 2009, Vol.51(1), pp.51-61 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9VAMJR6UBDxE-sXPbgnSU022WT3JJvXlGKLILTSW8i-JIeHtkXbiyfzeikqIoKgFxEFkXqwaK_ij4m17b9wZjd5zSseqoVHmJ2dnd3ZydudSWYnlnWdwarIaFHYlGeO7YOFbaeKKTvwCuF0M8GyQkf53gmm5_3bC2xhZNRpRS2trqiJ7uO_niv5H60CDvSKp2T_QbMDpoAAGPQLV9AwXA-l405nNiSxB9Yg4VIDlHBeYyIPqimrSxJD8mZmm1J0kFp6DRCQmBMpiYAqRiKH8LiuEqxp1WkA4BMS6ZDIJ7HAVpIjBorQEPhwj4hY85kkkpI4wB6FUzcXgAHKKSSD5hz40KYvMeiibT8jBwE9Mg10iOwgIIH5FPYi3HoAQMMZYrAq0L10iJAtQMvIB8-I9Rgpka5mPEkiHSWqRRCaeYAT0qaHUojMkKXEudH0Wgrkb0QO9ukDnAlMSIxkUCtIxPWEgKrY0DBc_A3k0_TNmFA06C8celizvxlgPYwXeKPosR6IwKZGCSIgUYAAKEEK5IqKijQm0uoFjKcBLVQkbxxxwlv7jMcxfrOOLs7NPgjLuu07-qvPg42yzgzcXhDMrldXGPvJ5NY_uDOD4Y6JbTF799IEcyecps1QrvP6n5RosoS5iTu4NFV4GDHpgUd0jIahi0G8M3fbDgWGFbQNfrCv2wn8wB522gnvqOBeK3sTA7mdlsGLJ7P5ftwBOEMB2tiNreeDd65tvWYKzdEaFPZmW1Qwb3vg7GEWj5MPzAtYkwinZcvOnbZO1U7ouDTCnrFGeulZ6_gkBg7itx_PWfdwZanKp1V_vSq_63WkKr_qFaQqv2jsx6r8tLvxZnvzRVW-rvrPq_6znfdbexufd7Y2d9febf_48Hv9ZdV_9evn2t6Tb1X5FgjOW_NT8Vxn2q6_wGL3PJDGTsEZ8MKCpeDVOUUepop6XqCUo5QfKl-oHB3AoOC0m2YsU57IckeBw97NnbxwQ--CNbq4tJhftMZZQambMdp1swAfyqQpA2-y6IZKidBJ6ZglzBQlyybNTnL4m2HMujU0q0m9Rj9KussCmt9fwq_tisRYIIkJ5WUawNQBzOeXjtD7ZeuEecWMz2WvWKMrD1fzq-CprKhr-ub8AyYg_So |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CCL7%E3%81%8A%E3%82%88%E3%81%B3CCL25%E3%81%AFRANKL%E3%81%AB%E3%82%88%E3%81%A3%E3%81%A6%E8%AA%98%E5%B0%8E%E3%81%95%E3%82%8C%E3%82%8B%E7%A0%B4%E9%AA%A8%E7%B4%B0%E8%83%9E%E5%BD%A2%E6%88%90%E3%82%92%E4%BF%83%E9%80%B2%E3%81%99%E3%82%8B&rft.jtitle=%E6%97%A5%E6%9C%AC%E6%AD%AF%E5%91%A8%E7%97%85%E5%AD%A6%E4%BC%9A%E4%BC%9A%E8%AA%8C&rft.au=%E5%B2%A1%E6%9D%BE%2C+%E8%89%AF%E6%98%8C&rft.au=%E8%87%BC%E4%BA%95%2C+%E9%80%9A%E5%BD%A6&rft.au=%E6%9E%97%2C+%E5%B9%B8%E6%81%B5&rft.au=%E5%B1%B1%E6%9C%AC%2C+%E6%9D%BE%E7%94%B7&rft.date=2009&rft.pub=%E7%89%B9%E5%AE%9A%E9%9D%9E%E5%96%B6%E5%88%A9%E6%B4%BB%E5%8B%95%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%AD%AF%E5%91%A8%E7%97%85%E5%AD%A6%E4%BC%9A&rft.issn=0385-0110&rft.eissn=1880-408X&rft.volume=51&rft.issue=1&rft.spage=51&rft.epage=61&rft_id=info:doi/10.2329%2Fperio.51.051&rft.externalDocID=article_perio_51_1_51_1_51_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0385-0110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0385-0110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0385-0110&client=summon |